
www.manaraa.com

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

A SOFTWARE RELIABILITY ENGINEERING
CASE STUDY

by

Judie A. Heineman

March, 1996

Thesis Advisor: Norman F. Schneidewind

Thesis
H42336

Approved for public release; distribution is unlimited.

www.manaraa.com

DUDLEY KNOX LIBRARY

NAVAL POSTGRADUATE SCHOOL
MONTEREY CA 93943-5101

www.manaraa.com

REPORT DOCUMENTATION PAGE Forni Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data

sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other

aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and

Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)

Washington DC 20503.

1 . AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March, 1996

REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE A SOFTWARE RELIABILITY ENGINEERING
CASE STUDY

6. AUTHOR(S) Heineman, Judie A.

FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey CA 93943-5000

PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOPJNG/MON1TORING
AGENCY REPORT NUMBER

1 1 . SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAJLABIUTY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Handling, identifying, and correcting faults are significant concerns for the software manager because (1) the presence of

faults in the operational software can put human life and mission success at risk in a safety critical application and (2) the

entire software reliability process is expensive. Designing an effective Software Reliability Engineering (SRE) process is one

method to increase reliability and reduce costs. This thesis describes a process that is being implemented at Marine Corps

Tactical System Support Activity (MCTSSA), using the Schneidewind Reliability Model and the SRE process described in the

American Institute ofAeronautics and Astronautics Recommended Practice in Software Reliability. In addition to applying the

SRE process to single node systems, its applicability to multi-node LAN-based distributed systems is explored. Each of the

SRE steps is discussed, with practical examples provided, as they would apply to a testing facility. Special attention is directed

to data collection methodologies and the application ofmodel results. In addition, a handbook and training plan are provided

for use by MCTSSA during the transition to the SRE process.

14. SUBJECT TERMS Software Reliability Engineering Process, Reliability

Modeling, Multi-node Reliability Model

15. NUMBER OF
PAGES 182

16. PRICE CODE

17. SECURITY CLASSIFI-

CATION OF REPORT
Unclassified

18. SECURITY CLASSIFI-

CATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFI-

CATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18 298-102

www.manaraa.com

11

www.manaraa.com

Approved for public release; distribution is unlimited.

A SOFTWARE RELIABILITY ENGINEERING CASE STUDY

Judie A. ^Heineman

Lieutenant Commander, United States Navy

B.A., College of the Holy Cross, 1984

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY
MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
March 1996

www.manaraa.com

IV

www.manaraa.com

DUDLEY KNOX LIBRARY

kim/A' POSTGRADUATE SCHOUU

Monterey ca 93943-5101

ABSTRACT

Handling, identifying, and correcting faults are significant concerns for the software

manager because (1) the presence of faults in the operational software can put human life and

mission success at risk in a safety critical application and (2) the entire software reliability

process is expensive. Designing an effective Software Reliability Engineering (SRE) process

is one method to increase reliability and reduce costs. This thesis describes a process that is

being implemented at Marine Corps Tactical System Support Activity (MCTSSA), using the

Schneidewind Reliability Model and the SRE process described in the American Institute of

Aeronautics and Astronautics Recommended Practice in Software Reliability. In addition to

applying the SRE process to single node systems, its applicability to multi-node LAN-based

distributed systems is explored. Each of the SRE steps is discussed, with practical examples

provided, as they would apply to a testing facility. Special attention is directed to data

collection methodologies and the application ofmodel results. In addition, a handbook and

training plan are provided for use by MCTSSA during the transition to the SRE process.

www.manaraa.com

VI

www.manaraa.com

TABLE OF CONTENTS

I. SOFTWARE RELIABILITY 1

A. HARDWARE VS. SOFTWARE RELIABILITY 1

B. DEFINITION OF SOFTWARE RELIABILITY 2

C. USES FOR THE SOFTWARE RELIABILITY ENGINEERING (SRE) PROCESS 2

D. APPLICABILITY OF THE SRE PROCESS TO SOFTWARE MANAGERS 4

E. THESIS OBJECTIVES AND PURPOSE 5

II. THE SRE PROCESS 7

A. SRE PROCESS DISCUSSION 7

B. BASIC CONCEPTS 7

C COMPONENTS OF AN SRE PROGRAM 8

D. GENERIC STEPS FOR IMPLEMENTING AN SRE PROGRAM 10

E. SUMMARY OF SOFTWARE RELIABILITY IMPLEMENTATION PLAN 17

F. COMMERCIAL APPLICATIONS OF THE SRE PROCESS 18

HI. AN SRE PROCESS CASE STUDY 19

A. INTRODUCTION 19

B. MCTSSA'S REQUIREMENTS FOR ESTABLISHING AN SRE PROCESS 19

C. APPLICABILITY OF THE SRE PROCESS TO MCTSSA 20

D DATA COLLECTION REQUIREMENTS AND CHALLENGES 21

E. MODEL APPLICATION AND ITS RESULTS 26

F. USE OF THE SRE PROCESS IN A MULTI-NODE CONFIGURATION 31

VII

www.manaraa.com

IV. CONCLUSIONS 39

A. PROBLEMS ENCOUNTERED IN THE SRE DEVELOPMENT PROCESS 39

B. SUMMARY OF FINDINGS 39

C. BENEFITS ACCRUED FROM THE PROJECT 40

APPENDLX A. MCTSSA SRE HANDBOOK 41

APPENDLX B. MCTSSA SRE TRAINING PLAN 127

APPENDLX C. LOGAIS DEFECT DATA 163

LIST OF REFERENCES 171

INITIAL DISTRIBUTION LIST 173

VIII

www.manaraa.com

I. SOFTWARE RELIABILITY

A. HARDWARE VS. SOFTWARE RELIABILITY

While most people are familiar with hardware reliability , software reliability appears

to be a concept that needs some clarification. Contrasting the two concepts may shed some

light on the distinctions. The American Institute of Aeronautical Engineers (AIEE, 1993)

provides the following examples:

• Changes to hardware systems are extensive and time-consuming due to the

physical nature of hardware. Changing software is frequently more feasible

because software can be easily changed with a text editor. For example, it

can be adapted to changing user requirements, whereas this would not be

feasible with hardware. However, this software flexibility has caused great

problems in the industry because of inadequate specifications, testing, and

maintenance of software changes.

• Software has no physical existence. Since it includes both data and logic, any

item can be a source of failure.

• Failures attributable to software faults frequently occur without advance

warning.

• Repair generally restores hardware to its previous state. Correction of

software problems always changes the software to a state different from the

one prior to the change.

• Redundancy and fault tolerance for hardware are common practice. These

concepts are only beginning to be applied to software.

• A high rate of software changes can be detrimental to software reliability.

With these distinctions in mind, one can begin to understand the challenges an

organization faces when it deals with software and its reliability. Not only are most personnel

unfamiliar with the concept of software reliability, they are certainly challenged when it comes

to predicting its reliability.

www.manaraa.com

IV. CONCLUSIONS 39

A. PROBLEMS ENCOUNTERED IN THE SRE DEVELOPMENT PROCESS 39

B. SUMMARY OF FINDINGS 39

C. BENEFITS ACCRUED FROM THE PROJECT 40

APPENDIX A. MCTSSA SRE HANDBOOK 41

APPENDIXB. MCTSSA SRE TRAINING PLAN 127

APPENDIX C. LOGAIS DEFECT DATA 163

LIST OF REFERENCES 171

INITIAL DISTRIBUTION LIST 173

vm

www.manaraa.com

I. SOFTWARE RELIABILITY

A. HARDWARE VS. SOFTWARE RELIABILITY

While most people are familiar with hardware reliability , software reliability appears

to be a concept that needs some clarification. Contrasting the two concepts may shed some

light on the distinctions. The American Institute of Aeronautical Engineers (AEEE, 1993)

provides the following examples:

• Changes to hardware systems are extensive and time-consuming due to the

physical nature of hardware. Changing software is frequently more feasible

because software can be easily changed with a text editor. For example, it

can be adapted to changing user requirements, whereas this would not be

feasible with hardware. However, this software flexibility has caused great

problems in the industry because of inadequate specifications, testing, and

maintenance of software changes.

• Software has no physical existence. Since it includes both data and logic, any

item can be a source of failure.

• Failures attributable to software faults frequently occur without advance

warning.

• Repair generally restores hardware to its previous state. Correction of

software problems always changes the software to a state different from the

one prior to the change.

• Redundancy and fault tolerance for hardware are common practice. These

concepts are only beginning to be applied to software.

• A high rate of software changes can be detrimental to software reliability.

With these distinctions in mind, one can begin to understand the challenges an

organization faces when it deals with software and its reliability. Not only are most personnel

unfamiliar with the concept of software reliability, they are certainly challenged when it comes

to predicting its reliability.

www.manaraa.com

B. DEFINITION OF SOFTWARE RELIABILITY

Reliability is seen as the ability of a system to perform as expected under specific

conditions for a specified period of time. This also includes the "probability of failure-free

operation of a computer program for a specified time in a specified environment." (Musa,

1987) The challenge occurs when this concept must be matched with appropriate

measurement techniques to evaluate the software's ability to perform.

C. USES FOR THE SOFTWARE RELIABILITY ENGINEERING (SRE) PROCESS

Software Reliability Engineering (SRE) is a new discipline that is maturing as more

organizations see the need to develop standard reliability practices. The American Institute

of Aeronautics and Astronautics (AIAA) defines SRE as ''the application of statistical

techniques to data collected during system development and operation to specify, predict,

estimate, and assess the reliability of software-based systems." (AIAA, 1993) This

formalized process helps prevent organizations from adjusting and modifying software "on

the fly" and encourages an engineering way of conducting business. This methodology is

especially helpful for the software manager and the user. Musa (1987) proposes four specific

ways in which software reliability measures can be of great value to the manager and user.

First, the reliability measures provide a means of quantitatively evaluating the

software. Organizations are frequently introducing new techniques for improving the means

by which software is designed. However, these techniques do not include any methodology

for distinguishing between good and bad new technology. Software reliability measures offer

the promise of providing at least one criterion for evaluating the new technology. As an

www.manaraa.com

example, the organization can compare the number of failures per unit time of the new

technology versus the old. (Musa, 1987)

Second, a software reliability measure permits the user to evaluate the development

status ofthe product during the test phases ofthe project. In the past, evaluation criteria used

were purely subjective: intuition of the designer, percentage of tests completed, and

successful completion ofa specific number of tests. An objective reliability measure, such as

the failure intensity mentioned above, can provide a sound means for evaluating development

status. (Musa, 1987) Additionally, the measurement of residual faults and failures is gaining

in popularity and provides a more intuitive understanding of the status of the software's

reliability. Residual faults and failures address the issue ofremaining problems in the software

and provide a means of quantifying the risk of experiencing a software failure during

software execution. (Keller, 1995) They also provide a means of "rationalizing how long to

test a piece of software." Having predictions regarding the extent to which the software is not

fault free is meaningful for assessing the risk ofdeploying the software. (Schneidewind, 1996)

Third, software reliability measures can be used to monitor the operational

performance of the software and evaluate any changes made during design. Typically, as

more changes are made to software, its ability to perform as expected (reliability) decreases.

(Musa, 1987)

Finally, the manager and user are given a better insight into the various factors

affecting and influencing software reliability. This provides them with the capability of

making much more informed decisions. (Musa, 1987)

www.manaraa.com

D. APPLICABILITY OF THE SRE PROCESS TO SOFTWARE MANAGERS

Handling, identifying and correcting faults is a significant concern for the manager

because the entire software reliability process is expensive. "It also impacts development

schedules and system performance (through increased use of computer resources such as

memory, CPU time and peripherals requirements)." (AIAA, 1993) This addresses the key

issue regarding SRE ~ itprovides the manager with information about which he can make

informed decisions.

There will always be a tradeoffbetween reliability, sometimes referred to as the failure

rate, and cost. (Cost is directly related to testing time). The manager will need to decide on

a certain level of reliability for the product, resulting in a set cost. Thus, higher reliability will

result in a higher cost. The converse is also true.

In general, the failure rate of a software system is seen as a curve with a decreasing

slope which results from the identification and removal of faults as time passes. It is the

primary purpose of reliability modeling to define the shape of this resulting curve using

statistical methodologies. The model used in these reliability assessments can provide

prediction information regarding the software execution time needed to discover a specified

number of faults, or predict the time period when the next fault will occur. Figure 1 provides

a sample software reliability curve that can be generated by using the results of a software

reliability model. (AIAA, 1993)

www.manaraa.com

Failure Rate

Test Time

Figure 1 : Software Reliability Tradeoff Curve

E. THESIS OBJECTIVES AND PURPOSE

Of interest in this thesis is the applicability ofthe SRE process to DOD organizations.

This thesis will further discuss and evaluate the use ofthe SRE process at the Marine Corps

Tactical Systems Support Activity (MCTSSA), Camp Pendleton, CA. Specifically, it will

discuss the generic, recommended steps in implementing an SRE program and will further

expand this discussion to include application of the concepts to actual MCTSSA data

obtained from a current project, the Marine Air-Ground Task Force II/Logistics Automated

Information Systems (or LOGAIS, for short). The result of this study will produce a design

for a distributed systems SRE process and subsequent training program. This training

program addresses AIAA and IEEE software measurement standards and concepts relating

to an SRE program and its implementation.

www.manaraa.com

www.manaraa.com

n. THE SRE PROCESS

A. SRE PROCESS DISCUSSION

As previously mentioned, the software reliability engineering process allows managers

to quantitatively evaluate the software delivered to them. It provides for management of risk

by predicting the number of faults in the code and the probability of encountering those faults

during software execution. It permits the manager to assess the current status of a project

by forecasting the reliability of the software and can be used as a metric for process

improvement evaluation, for comparing competing products, and for safety certification.

Additionally, it permits managers to plan for scheduled introduction ofnew components and

plan for proper resource allocation. (Stark, 1992)

"The primary benefit of an SRE process, however, is that it permits a customer-

oriented measure of quality." (Stark, 1992) A common ground is provided for discussion

among the engineer, the manager, and the user. Key here is the fact that software reliability

can be used throughout the life-cycle to make trade-offs between cost, schedule, and quality.

(Stark, 1992)

B. BASIC CONCEPTS

Each discipline uses terminology specific to its domain. The same is true for the SRE

process. With this in mind, the following definitions should provide a common baseline for

further discussion ofthe SRE process.

As with any intellectual product, errors in design may occur. An error can be defined

as "a discrepancy between a computed, observed or measured value or condition and the

true, specified or theoretically correct value or condition." (AIAA, 1993) In software, these

www.manaraa.com

errors may appear while completing requirements formulation or, as is often the case, during

design, coding, and testing the product. The software development process should include

measures to discover and correct faults resulting from these errors. [In this context, faults are

denned as "defects in the code that can be the cause ofone or more failures." (AIAA, 1993)]

These measures can address reviews, audits, screening by language-dependent tools,

and several layers of testing. One way to reduce the number and criticality of faults is by

modeling the effects of the remaining faults in the delivered product. This can be achieved

through a dedicated measurement process by which each defect or fault is noted and formally

recorded for inclusion in the reliability model. (AIAA, 1993)

As a point of clarification, a fault is technically different from a failure. A failure can

be defined as "the inability of a system or system component to perform a required function

within specified limits" or the "departure of program operation from program requirements."

(AIAA, 1993) In simpler terms, a fault usually leads to a failure.

C. COMPONENTS OF AN SRE PROGRAM

A successful software reliability program consists ofmore than just a model. It also

consists ofthe support structure: reliability requirements; reliability measurements to meet

those requirements; data collection procedures to obtain the necessary data; definition of

severity levels of failures; applications of reliability predictions; interpretation of model

predictions; and user feedback for model improvements. (Schneidewind, 1995) Although

the conceptualization ofthe model does not occur in a sequence of steps as mentioned above,

its implementation does. The practitioner can best understand this process from a description

ofthe chronology of implementing and applying the model. Therefore, this approach will be

8

www.manaraa.com

used in explaining the SRE process and the application of the selected reliability model.

(Schneidewind, 1995)

The SRE methodology used for the MCTSSA project is based on the Schneidewind

Software ReliabilityModel (Schneidwind, 1993; Schneidewind, 1975), one of the four models

recommended in the AIAA Recommended Practicefor Software Reliability (AIAA, 1993).

The validation is based on the fact the model is used to assist in assessing the reliability of the

NASA Space Shuttle flight software. According to Ted Keller, Manager, Project

Coordination, Onboard Shuttle Software Systems, Loral Space Information Systems: "The

Shuttle software project is experimenting with a promising algorithm which involves the use

of the Schneidewind Software Reliability Model to compute a parameter: fraction of

remainingfailures as a function ofthe archived failure history during testing and operation"

(Keller, 1995). Remaining failures, fraction of remaining failures, and time to next failure

would not be used to the exclusion of other approaches in making reliability assessments.

These metrics would be combined with process procedures such as inspections, defect

prevention, project control boards, process assessment, and fault tracking, to provide a

quantitative basis for achieving reliability objectives. (Billings, 1994; Schneidewind, 1995)

The standard practices described under the Generic Steps for Implementing an SRE

Program are essentially those recommended in the AIAA Recommended Practice for

Software Reliability (AIAA, 1993) and the ANSI/IEEE Standardfor a Software Quality

Metrics Methodology (IEEE, 1993).

www.manaraa.com

D. GENERIC STEPS FOR IMPLEMENTING AN SRE PROGRAM

Implementing a software reliability program is a two-phased process. It consists of

(1) identifying the reliability goals and (2) testing the software to see how it conforms to the

stated objectives. The reliability goals can be ideal or conceptual, e.g., zero defects, but

should have some basis in reality. The testing
:phase is the most complex since it involves the

actual collection of raw defect data and molding the data to fit the selected model.

With these phases being the stated objective, the following steps should be considered

by the organization as it begins to develop a software reliability program. These steps provide

a "cookbook" approach to the SRE process and are ordinarily followed sequentially. Each

step will be discussed briefly to provide a general understanding of its purpose. Stages that

require numerical calculations and application of specific model parameters will be noted.

The AAIA (1993) SRE steps are:

State the Reliability Requirement

Establish a Measurement Framework

Collect the Data

Establish Problem Severity Levels

Estimate Model Parameters

Select the Optimal Set of Failure Data

Identify the Operational Profile

Make Reliability Predictions

Validate the Model

Make Reliability Decisions

Use Software Reliability Tools

1. Stating the Reliability Requirement

In this step, the software manager should describe the condition that must be fulfilled

for the software to be considered satisfactory (reliable). In some cases the reliability

10

www.manaraa.com

specification can be quantified: no more than one critical software failure (i. e., causes the

system crash) in an ATM machine per 10,000 hours of operation. In other cases, the

specification is stated qualitatively: "The product will have no software failure that would

result in loss of life, loss of mission, or cancellation of mission."

2. Establishing a Measurement Framework

One approach the organization could employ would be to take the software from the

developer at delivery and run it on its own systems and see how well, or poorly, the software

performed. However, ifthe manager adopted this approach, many months could be wasted

if the software is deemed unreliable after post-delivery testing. A better way would be to

have some indications of the system's reliability before the software is delivered to the

organization, specifically, by conducting developmental or operational testing.

DOD, and other organizations that develop or procure software, can implement

software measurement techniques that can be used to assess the software's reliability during

developmental testing, i.e., before the software is delivered. The software manager would

do this reliability evaluation by establishing a measurement framework (plan) using the failure

data collected by the developer during the product's design phase.

In addition to collecting failure data, other metrics can be collected during the

software design phase to provide the evaluator with an early indication of software quality.

However, the applicability ofthese metrics will need to be determined through various metric

evaluation techniques. This evaluation will indicate whether a relationship exists between the

metric and the quality ofthe software under evaluation. Examples of these metrics include

the number of executable statements, comments (non-executable code), paths, cycles, and

11

www.manaraa.com

total lines of code (total non-commented lines of code). A complete discussion of metric

evaluation is beyond the scope of this thesis.

3. Collecting the Data

Without data, the model would be useless and reliability predictions would not be able

to be made. For this data collection, a Data Base Management System (DBMS) may prove

to be helpful (see Table 1 for the required data elements.) For computational purposes, the

file management system of certain software reliability tools (e.g., SMERFS and Statgraphics,

which are discussed in Appendix A) are usually adequate. However, to manipulate large

amounts of failure and metrics data, a specially designed DBMS may be beneficial. This

DBMS engine would allow for data sorting for various analyses and reporting purposes. This

is accomplished by identifying the key fields of the data (date, time of failure, type of failure,

degree of failure) and relating those fields with others. By using the DBMS's query

capability, various statistics and reports can be produced by the touch of a few keys. This

data can then be properly formatted to be input into the model and further evaluated for

trends.

System

ID

Days#

(since start of

Problem

Report ID

Problem

Severity

Failure Date Module

with Fault

Description

of Problem

Table 1 : Sample Data Collection Format

12

www.manaraa.com

For each system, there should be a brief description of its purpose and functions. The Days

field could also be noted in hours or minutes, as appropriate. It is recommended that the

Problem ReportID field be coded to indicate Software (S) failure, Hardware (H) failure, or

People (P) failure.

A more detailed discrepancy report is found in Appendix A. This detailed report

could be implemented by the organization as it becomes more familiar with the Software

Reliability Process.

4. Establishing Problem Severity Levels

The organization will need to establish some consistency in describing the faults it

discovers. This will allow better analysis and classification of failures in the reliability

predictions. Some AIAA (1993) recommended severity level descriptions are as follows:

Level 1. Loss of life, loss of mission, abort mission

Level 2. Degradation in performance

Level 3. Operator annoyance

Level 4. System ok, but documentation in error

Level 5. Error in classifying a problem (i.e., no problem existed in the first place.)

These levels should be recorded as part of Table 1.

Note: Not all defects result in failures.

5. Estimating Model Parameters

Once a model has been chosen to be applicable to a particular system, the necessary

model parameters must be estimated using SMERFS (see page 16, Step 11 for a brief

discussion of this software tool). For the purposes of this thesis and project, the

Schneidewind Software Reliability Model is used. Three parameters are used in this model

and will be used for MCTSSA: a , which is the failure rate at the beginning ofthe testing

13

www.manaraa.com

interval "s," and p , which is the failure rate per failure, and "s," the first interval used in

parameter estimation. (Schneidewind, 1995)

6. Selecting the Optimal Set of Failure Data

This stage selects the subset of failure data, starting with the beginning interval, "s"

through "t," the last observed interval, that will give the best parameter estimates and the

most accurate predictions. It relies on the observation that the software process and product

change over time. Therefore, old data may no longer be representative of the current and

future state ofthe process and product and may not be as applicable for reliability predictions

as the more recent data. A comprehensive discussion of this factor is provided in

Appendix A.

7. Identifying the Operational Profile

The operational profile describes the system's environment. It is usually discussed in

terms ofmodes (single node or multi-node operation), frequency of use of a particular station

with each station performing a different function (e.g., Workstation 1 performing database

functions, Workstation 2 performing wordprocessing functions), and the frequency of

function execution (the amount of time the application has been running). It includes the

input variables (e.g., a listing of available equipment or a ship's destination), the functional

environment ofthe program (i.e., a specific function the system is to perform such as sorting

the available equipment by minor property number), and the output variable (e.g., a printout

ofthe ship's destinations for the next two months). In this framework, a failure can be seen

as a departure of the output variable from what it is expected to be. (Musa, 1987) Of note

14

www.manaraa.com

for this project, a single node configuration is assumed. The applicability of the Schneidewind

Software Reliability Model to multi-node configuration is discussed Chapter III of this thesis.

As part ofthe operational profile, the organization would be using the obtained failure

data and calculating the various parameter inputs to be used in the reliability model. A

detailed discussion of these parameters is beyond the scope of this thesis; however, the

importance and significance of these calculations is further discussed in Appendix A.

8. Making Reliability Predictions

This step is the key to predicting the reliability ofthe software under evaluation. Each

ofthe listed predictions and the applicability to a managerial decision is described in detail in

Section 2 ofAppendix A. For completeness, however, the possible predictions resulting from

the model application are:

Time to Next Failure

Cumulative Failures for a Specified Time

Remaining Failures and Fraction ofRemaining Failures

Total Failures over the Life of the Software

Test Time to Achieve Specified Remaining Failures

Operational Quality

9. Validating the Model

This step evaluates the model to determine if it actually measures what the model is

designed to measure. The predicted values are compared to the actual values to make a

determination of the model's validity. As an example, ifthe model predicts that the time to

next failure will be two periods, this predicted time would be compared to the actual time.

Validation is achieved after certain number and types of predictions have been made with a

specified accuracy (e.g., average relative error of< 20%).

15

www.manaraa.com

If, however, the values do not compare favorably, the data used in the model should

be carefully examined to identify if anything unusual can be found. If the data appears valid,

and the model prediction does not match reality, different models would need to be

investigated. For the purposes of this thesis and project, the Schneidewind Software

Reliability Model will be used exclusively.

10. Making Reliability Decisions

The purpose of implementing a reliability program is to provide the manager with

additional information through which he can make informed decisions. Reliability decisions

such as "Is the software safe enough to use such that it will not cause or result in loss of life?"

can be made as a result of the model's predictions. This particular application can be used in

the Shuttle software. Here, as an example, the manager must decide whether or not to launch

the space shuttle based on the software reliability predictions. For this example, the predicted

remaining failures must be less than a specified critical value and the predicted time to next

failure must be at least as large at the mission execution time plus some safety margin. [This

example will be addressed later in Appendix A using specific numerical examples. It is

presented here to provide continuity of thought for the steps in implementing a software

reliability program] For any organization, the predicted software reliability can be key to

the managerial decision to accept final delivery of the product or not. If the software is

predicted Xo perform within specifications, the software can be accepted by the organization

as fulfilling the contractual obligations. If it is predicted to fall short of the desired goals,

further discussion may be needed in addition to further testing and evaluation.

16

www.manaraa.com

1 1. Using Software Reliability Tools

There are software reliability tools available to make the model calculations easier to

achieve. The Statistical Modeling and Estimation ofReliability Functionsfor Software,

SMERJFS, is a software package available for this purpose. (Fair, 1993) Additionally,

Statgraphics, a statistical analysis program, is used to augment SMERFS calculations.

Sample SMERFS and Statgraphics sessions are outlined in the Testing Procedures section of

Appendix A.

E. SUMMARY OF SOFTWARE RELIABILITY IMPLEMENTATION PLAN

In summary, the first phase in the software reliability engineering (SRE) process is

to state the organization's reliability goals. These goals can be ideal or conceptual but must

have some basis in reality. A goal of "0%" defects might be the ideal objective, but it would

not occur in the real world. Imagining for the moment that it could happen, it would cost

an extraordinarily large sum of money to obtain. (Recall Figure 1, the Software Reliability

Tradeoff Curve).

The second phase of the SRE involves testing. It is here that the failure data is

collected and formatted for inclusion in the model of choice. It is the data that allows the

predictions for reliability to be made. The test plan used must be consistent with the goals

established. Ifa goal is to have a maximum number of remaining failures set at less than one,

then the test plan must be able to predict the remaining number of failures in the software.

The tests provide insight into the future — what may occur as a result ofusing this software.

This insight is used to either forge ahead with actual implementation ofthe software or return

to the drawing board and reassess the system. It will provide an indication as to whether or

17

www.manaraa.com

not additional testing is needed because the results to date may be inconclusive or show an

undesirable trend. The test results also allow the manager to prioritize his assets. It can help

him to decide where he should assign his resources. Is Module C predicted to be more

reliable than Module B? Ifthis is true, he may decide to allocate the majority of his resources

to Module B to improve its reliability.

These SRE steps provide the reader with the general overview of the reliability

methology that should be carried out as part of the software reliability engineering process.

Chapter HI provides amplifying information regarding the specific data that must be collected,

how it is analyzed by the model, and how the results of the model can be interpreted. It

further demonstrates the applicability of the SRE to MCTSSA software systems.

F. COMMERCIAL APPLICATIONS OF THE SRE PROCESS

SRE is not a new phenomenon overtaking the software community. It is a process

that is, however, gaining visibility. Several well known organizations currently employ the

process as described above. Key among these organizations is AT&T which is considered

to be in the forefront ofthis technology since the early 1970's when John Musa began writing

about this topic. The Navy has applied this technology to the capital Trident missile series.

NASA (IBM Federal Services Company, now Loral Space Information Systems) has been

reporting its reliability results since the early 1980's and has completed several studies on

their Space Shuttle system. (Stark, 1992) It is on this latter organization that the majority

ofexamples in Appendices A and B are based. The Schneidewind Software Reliability Model

is used extensively by NASA to predict the reliability ofthe shuttle's onboard system software

(Scheidewind, 1992).

18

www.manaraa.com

HI. AN SRE PROCESS CASE STUDY

A. INTRODUCTION

With software reliability frequently seen as an indication of software quality, most

organizations are focusing their attention on this difficult to measure concept. The Marine

Corps Tactical System Support Activity (MCTSSA), Camp Pendleton, CA is one such DOD

organization. Part of this command's mission is to provide "cradle to grave" software

support for selected software systems. The key objective of this mission assignment was to

establish "a unity of effort in the technical management of software engineering, software

design, development and integration and post deployment software maintenance." (MCTSSA,

1994)

B. MCTSSA'S REQUDIEMENTS FOR ESTABLISHING AN SRE PROCESS

MCTSSA uses reliability as a measure ofan Automated Information System's (AIS's)

operational suitability. They define AISs as "multi-functional, distributed systems where

functionality is distributed in various servers/workstations around a network." (MCTSSA,

1995) Some of the systems with which they work can provide alternate communication

paths and multi-source inputs into servers or workstations, thereby reducing the impact of

single point failures. The challenge MCTSSA faces is that the reliability criteria used in the

past to measure the suitability of an AIS's field deployability may not be appropriate for the

distributed systems being developed today. (MCTSSA, 1995)

The command required a software model that could be used to measure the software

reliability of certain AISs during follow-on testing and evaluation. Key in this requirement

was determination ofthe applicability ofthe selected model to multi-node systems since most

19

www.manaraa.com

reliability models available today apply to single node configurations. As part of this research

project, a Software Reliability Training Plan and accompanying Handbook would be provided

to the organization. These deliverables (included in this thesis as Appendices A and B) would

be used by MCTSSA to serve as references for implementing standard software reliability

practices at the command and applying the selected Software Reliability Model.

C. APPLICABILITY OF THE SRE PROCESS TO MCTSSA

The generic steps of the SRE Process, as recommended by AIAA (1993), were

discussed in Chapter II ofthis thesis. These steps can be adopted by any organization which

desires to implement a management process to measure the reliability of the software it is

evaluating. Through the use of a Software Reliability Model, the command can use the

model's results to predict the future reliability of the software. This will enable management

to get an indication of the delivered product's quality and permit the manager to assign his

resources appropriately.

As an organization designed to provide "cradle to grave" software support for

selected software systems, MCTSSA can gain invaluable predictions. The results of the

model can be used by the command, prior to its acceptance of the finished product from the

developer, to make some assessments on the suitability of the software's reliability. Does the

reliability meet the requirements stated in the contract? How does the software's predicted

(future) reliability stand? Is it within accepted tolerances or is it out of range? Will

additional testing of specific modules be required? All of these questions can be addressed

through adoption of the SRE Process and proper selection of a Software Reliability Model.

20

www.manaraa.com

It was the focus of this thesis to address these issues and provide a recommended

strategy for MCTSSA in its reliability assessments using a current software project under

development for MCTSSA, specifically, the Marine Air-Ground Task Force II/Logistics

Automated Information Systems (or LOGAIS, for short). This system is "a family of

coordinated, mutually supporting, automated systems designed to support deliberate and

crisis action/time-sensitive planning, deployment, employment, and redeployment of a

MAGTF in independent, joint, and/or combined operations." (MAGTF II/LOGAIS, 1992)

It is a combination of microcomputer-based systems designed to provide all information

necessary for seamless integration with the Joint Operational Planning and Execution System

(JOPES). (MAGTF II/LOGAIS, 1995) The functions and specifics of the system are beyond

the scope of this thesis. However, since it operates in a microcomputer-based environment

it is perfectly suited for application ofthe SRE process.

The model selected for this project was the Schneidewind Software Reliability Model,

one of four models recommended by the AIAA (1993). A discussion of the recommended

strategy and the numerical calculations required by the model are included as part of the

Handbook provided to MCTSSA (Appendix A) and will not be repeated here. This model

is traditionally applied to single node configurations, as was done in this project. However,

Section H ofthis chapter proposes the application of the Schneidewind Software Reliability

Model to a multi-node configuration.

D. DATA COLLECTION REQUIREMENTS AND CHALLENGES

As previously mentioned, data collection is the most important and challenging aspect

ofimplementing an SRE process for any organization. Understanding that MCTSSA is not

21

www.manaraa.com

the developer of the software product, it can, however, encourage and/or require the

contractor to implement specified practices. This will ensure that the organization obtains the

reliability data in the format it desires, during development and prior to formal testing and

acceptance. This will enable MCTSSA to apply the statistical processes ofthe Schneidewind

Software Reliability Model to get an approximation of the software' s predicted reliability.

There are eight steps identified by the AIAA (1993) as a means for effective data

collection:

Establish the Objectives

Plan the Data Collection Process

Acquire Data Collection Tools

Provide Training

Perform Trial Run
Implement the Plan

Monitor the Data Collection and Use the Data

Provide Feedback to all Parties

Most ofthese steps are beyond the control ofthe independent software tester, MCTSSA, but

can be discussed during contract negotiations. MCTSSA can require the contractor to

provide fault data collected during the software design, which can then be used by MCTSSA

to ascertain the software's reliability status. Ofnote in this area is the fact that data collection

costs money. The organization desiring the test data should be specific about the type of data

it desires as part of their SRE implementation strategy. Since there may be a tendency to

want to collect everything, the decision makers must tradeoff cost of collection (including the

burden on data collectors) with return (Stark, 1992).

In the development of this research project, MCTSSA obtained a database of

compiled defect data from the contractor. This database, Software Edge's Defect Control

22

www.manaraa.com

Systemsfor Windows, Version 2.10, contained all the defect data the developer recorded on

the software during its design. As a database, the software provided a query capability which

was used extensively to draw out the appropriate data for inclusion in the Schneidewind

Software Reliability model. This data was the number of defects recorded during an

interval, one day, by date the defect was submitted to the database. This data was then

formatted chronologically (by a workday, not calendar day, since defects were only listed

during normal working hours) for inclusion in a table for easy ofreadability and analysis. This

date sequencing permits reliability predictions to be made. All of the 4584 defects from

November 1 1, 1994 through May 17, 1995 are listed in Appendix C. A determination was

made to group the data by five-day increments (to simulate the typical work week).

In addition to the data not being recorded in the database by true failure date, there

are other challenges the LOGAIS database presented: (1) the data was not true failure data

because it was not recorded in execution time when failures occur; rather it was recorded by

administrative convenience, by batches at the end of the workday; and (2) the data shows

large swings in daily defect count (Figure 2) not showing the expected decrease in number

of faults as time progresses (recall Figure 1). (Schneidewind, 1995b)

23

www.manaraa.com

Defects vs. Interval

250

§ 200
<u

CD

Q 150

«h

9 13 17 21 25 29 33 37 41 45 48 53
Interval

Figure 2. Defect Count vs. Time Interval

If, however, the data is averaged over five day intervals, a decreasing trend does

emerge but there are still some unanticipated peaks and valleys. This trend can be seen in

Figure 3.

24

www.manaraa.com

Average Defects vs. Interval
(Interval = 5 work days)

123456789 10 11

Week (5 Workdays)

Figure 3. Averaged Defects vs. Typical Five Day Work Week

If the data is smoothed out even further by using a "moving average" of 30 days, a

decreasing trend is seen. This is shown in Figure 4.

Weighted Average Plot
(Period = 30 days)

20 'M 1 1 1 H 1 1 M I I I H I I I I I I I I I I 1 1 H 1

1

1 1 1 1 1 1 1 1

1

1 1 1 1 1 1

1 5 9 13 17 21 25 29 33 37 41 45 48 53
Interval

— (Moving Average)

Figure 4. 30 Day Weighted Average ofNumber ofDefects Recorded

25

www.manaraa.com

These views of the data show the plausibility of using smoothed data as the input to

the reliability model instead of using raw data obtained directly from the LOGAIS database.

In this test ofthe data, raw LOGAIS data (the normal approach) did produce fair predictions.

Further studies using smoothed data versus raw data would need to be completed and

compared to demonstrate if any trends or accuracies are affected by the choice of data used.

This section will discuss the actual application of the Schneidewind Software

Reliability Model and the inputs required to obtain meaningful results. A comprehensive

discussion of the model parameters, inputs, and results can be found in the MCTSSA

Software Reliability Handbook, included as Appendix A in this thesis.

E. MODEL APPLICATION AND ITS RESULTS

In order to obtain the most accurate model parameters, both one-day and five-day

intervals were used. By comparing the Mean Square Errors (MSE) of these two intervals,

it was seen to favor the five-day cycle. Also varied were the length of the input data recorded

in the range t = 20, 55 for one-day intervals and in the range t = 13,20 for five-day intervals,

and used the value ofthe MSE to determine the optimal value for "t." (Schneidewind, 1995b)

1. Defect Count Predictions

As previously mentioned, it is advantageous for management to know what the

predicted reliability of the software is to help estimate additional testing time needed. This

also allows for proper resource management, i.e., assignment or not of a greater number of

personnel. This prediction can be achieved through the model's outputs for the predicted

number of defects in a selected interval range. This interval range can vary, but is seen as an

26

www.manaraa.com

interval oftime in the future, that is, "how many defects are predicted to occur in the next two

work weeks?" This was accomplished through the application of Equation 1 in SMERFS:

F^Ha/PMl-expt-p^-s+l))]-^,, (1)

"where (1) is the predicted number of defects in the interval range t^. s is the optimal

interval to start using defects for the estimation of a and P; and Xj
tl

is the observed number

of defects in the range s,^." Here tj is defined as t, the end of the parameter estimation

range, and t^ is the prediction interval. The results obtained showed that t = 30 gave relatively

good predictions as can be seen in Figure 5. (Schneidewind, 1995b)

Predicted Defects versus Actual Defects

Since Defect Submit Day 30

8

S

1000
_

~* Actual
"*"

Predicted

800

eoc -

400 /

S=23,t=30

200

i i i i i i

35 39 43 47

Defect Submit Day

55

Figure 5. Predicted Defects vs Actual Defects

27

www.manaraa.com

To determine "s," Equation 2 was used (via SMERFS):

t

2£ [a/p(l-exp(-p(i-s+ l)))-X
g4]

MSE r * (2)

r
t s + l

This equation calculates the MSE for defect counts and cumulative defect counts. "It

computes the sum of the squared differences between model predictions and actual

cumulative defect counts X^ in the range s<i<t " Here, s = 23 was optimal for t = 30.

(Schneidewind, 1995b)

Figure 5 illustrates the prediction of (1), starting at t = 30 and predicting for t2
= 35,

40, 45, 50, and 55 days, where these represent predicted defects in the intervals 5, 10, 15, 20,

and 25 days, respectively, from t = 30. It is seen that the predictions appear good until t2
=55

when the actual defect count takes a sharp turn upward. "This is counter to what one would

expect — a decrease in the rate of finding defects as testing continues because the defects

become harder to find. When this occurs, it indicates the need for using more ofthe available

data, re-estimating the parameters, and repeating the predictions." (Schneidewind, 1995b)

2. Cumulative Defect Count Predictions

As part ofa proactive management practice in software reliability, it is advantageous

for the manager to be aware of the cumulative count of defects predicted in the software.

This information can be used similarly to the defect count predictions but gives a better

indicator of the degree of testing problems encountered to date. For this calculation,

Equation 3 was used through Statgraphics:

28

www.manaraa.com

F(T)=(a/p)[l-exp(-P(T-s+l))]+Xs. 1 (3)

where X^ is the defect count in the range l,s-l

.

The results of this calculation did not produce a single curve that accurately matches

the true count of cumulative failures. However, upper and lower bound curves were

generated as seen in Figure 6.

5800

4800

|
0> 3800
>
2
5
£
3
o

2800

1800

Predicted Bounds of Cumulative Defects

versus Actual Cumulative Defects

55 75 115

Defect Submit Day

135

Figure 6. Predicted Bounds of Cumulative Defects vs. Actual Defects

29

www.manaraa.com

"The concept ofbounding is important in prediction because the manager would like to know

within what limits a quantity is likely to fall." Figure 6 shows that the predicted cumulative

defect count for day 129 (May 17, 1995) would fall between 3978 and 5047. The true

cumulative defect count for that date is 4584. (Schneidewind, 1995b)

3. The Amount of Time Needed to Find the Defects

Each of the previous calculations focuses on the issue that given a specific time

interval - for example, the next two work weeks - how many defects would we predict to be

discovered? A corollary to this question can be proposed. "How much time would it take to

find a specific number of defects?" Equation 4, implemented in SMERFS can be used to help

answer this question.

for (a/PHX^FJ

where (4) is the predicted time (intervals) until the next F
t
defects are found, t is the current

interval, and X,., is the cumulative number of defects observed in the range s,t. s = 23 and

t=30 were used to produce Figure 7. (The rationale for selecting the proper t and s can be

found in Appendix A.) Since the defect count is cumulative, F„ the time to find the defects

increases with time, as can be seen in Figure 7. This is expected since it will take longer to

find defects as time passes. The predicted and actual values are comparable until Day 55,

when there is an upward increase in predicted time to find the defects. As before when this

occurred, there is a need to use more available data, re-estimate the parameters, and repeat

the predictions. (Schneidewind, 1995b)

30

www.manaraa.com

Predicted vs Actual Time to Find Defects

Since Defect Submit Day 30

50
~ Actual
"*

Predicted

40

^^
§. S=23,t=30 /
asa^ 30

1s
E 20
li.

o

1
F 10

i i i i i i

35 39 43 47 51 55

Defect Submit Day

4.

Figure 7. Predicted vs. Actual Time to Find Defects

Results

Based on the above predictions, it appears feasible to employ a software reliability

model to data obtained for MCTSSA's LOGAIS project. The Schneidewind Software

Reliability Model gave predictions comparable to actual defect counts. However, in future

calculations, smoothed data would need to be employed to obtain better prediction accuracy.

F. USE OF THE SRE PROCESS IN A MULTI-NODE CONFIGURATION

This section will present a proposed model for use by MCTSSA with its system

survivability predictions (multi-node configurations). This is in contrast to the previously

discussed single node survivability concepts presented in the previous sections of this chapter.

The two models take into account different possible system configurations and the impact of

31

www.manaraa.com

server and client failures. These configuration setups can be found in Figures 8 through 10.

Of note, this section does not present any actual calculations using MCTSSA test data. It

only presents concepts that need to be further evaluated and tested. However, this section

can help explain some of the uses for the Schneidewind Software Reliability Model, its

relevance to the multi-node configuration concept, and its applicability to an organization's

system design and configuration.

1. Model 1

In this situation, there are critical clients: clients with critical functions (e.g.,

network communication) that must be kept operational for the system to survive. There are

also non-critical clients with non-critical functions (e.g., data base query). These clients also

act as a backup for the critical clients. The system does not fail unless (1) all the non-critical

clients fail and one or more critical clients fail, or (2) one or more servers fail. The model

concepts are illustrated in Figures 8, 9, and 10 where there are two servers, five critical

clients (C1...C5), and five non-critical clients (C6...C10). In Figure 8 one non-critical client,

C6, fails; therefore the system survives. In Figure 9 one ofthe servers, SI, fails; therefore the

system fails. Lastly, in Figure 10 one ofthe critical clients, C5, fails and all ofthe non-critical

clients, C6 ... CIO, fail; therefore the system fails.

32

www.manaraa.com

S= Server
C = Client

SI

CI

/gBmg8BBBK

\
\ 1

/
\V

Figure 8. Surviving Configuration

33

www.manaraa.com

S'= Server
C = Client

CI

C6 C7 C8 C9

S\ [k iv

CIO

Figure 9. Failing Configuration # 1

34

www.manaraa.com

S = Server
C = Client

CI

Figure 10. Failing Configuration # 2

Schneidewind (1995b) proposes the following descriptions to help explain the calculations

and concepts involved in this model:

a. Client or server failure: the application software or operating system in

the node ceases to function and the client or server is lost to the distributed system, as a result

of a software failure.

b. System failure: the system ceases to be operational because either: (1) all

non-critical clients fail AND one or more critical clients fail OR (2) one or more servers fail.

35

www.manaraa.com

c. Nn(t): The number of non-critical clients available in the system at time

t, where Nn(0) is the number of non-critical clients at the start of system operation. If a non-

critical client fails, the system can continue to operate — in a degraded mode — as long as

none of the servers or critical clients fail. In this situation, the function that had been

operational on the failed non-critical client can be continued on another client of this type and

Nn(t) is decreased by one.

d. Nc : The number of critical clients used in the system. If a critical client fails,

the system fails, if there are no non-critical clients available on which to run the critical

client. A change in software configuration may be necessary on the former non-critical client

in order to run the critical client. The former non-critical client becomes a critical client, Nn(t)

is decreased by one, and the system is run in a degraded mode. As long as the system remains

operational, N
c is constant.

e. Ns: The number of servers used in the system. If a server fails, the system

fails.

f. The probability that all Nn(t) have failed by time t, given that the software

fails, is (Schneidewind, 1995b):

p.(tHp«r®, (5)

where pc
is the probability that the software failure causes a client failure: pc=probability

(client fails
|
software fails). Equation (5) assumes that client failures are independent. This

is the case because a failure in one client's software would not cause a failure in another

client's software. However it is possible that a failure in server software could cause a failure

in client software, such as a client accessing a server that has corrupted data. The extent that

36

www.manaraa.com

this could happen depends significantly on whether the client software has been designed to

protect against such occurrences. Unless information can be obtained about such occurrences,

this factor will be ignored. The probability pc
can be estimated empirically as the ratio of:

(client down time caused by software failure)/(scheduled client operating time).

g. The probability that one or more Nc
fail, given that the software fails, is

(Schneidewind, 1995b):

P=l-(l-pc)
Nc

, (6)

h. The probability that one or more N
s
fail, given that the software fails, is

(Schneidewind, 1995b):

P=l-(l-p
s)
Ns

, (7)

where ps
is the probability that the software failure causes a server failure: ps

=probability

(server fails |software fails). Equation (7) assumes that server failures are independent. This

is the case because a failure in one server's software would not cause a failure in another

server's software. However it is possible that a failure in client software could cause a failure

in server software, such as a client with corrupted data accessing a server. The extent that this

could happen depends significantly on whether the server software has been designed to

protect against such occurrences. Unless information can be obtained about such

occurrences, this factor will be ignored. The probability ps
can be estimated empirically as the

ratio of: (server down time caused by software failure)/(scheduled server operating time).

i. Combining (5), (6), and (7), the probability of a system failure by time t,

given that the software fails, is (Schneidewind, 1995b):

PSyS(t)=(P„(t))(Pc)+Ps=[[(Pc)
Nn(t)

][l-(l-Pc)
N
1]+[l-(l-Ps)

NS
] (8)

37

www.manaraa.com

2. Model 2

In this situation, there are only non-critical clients Nn(t). However there is a

minimum number N^, ofthese clients that must remain operational for the system to survive.

Therefore the number that could fail, N
t
and cause a system failure is Nf^N^tHN^-l). Thus

if there were Nn(t)=10 clients at time t, and Nnm=3 clients minimum to keep the system

operational, a failure of eight or more clients would reduce the number of clients to less than

three.

a. In general the probability of falling below N^ by time t is (Schneidewind,

1995b):

Ei [NB(t)!/[(i!)(NB(t)-0!]J(pc%l-pJ^« (9)

where i=Nn(t)-(Nnm-l), ...,Nn(t).

b. Combining (9) and (7), the probability of a system failure by time t, given

that the software fails, is (Schneidewind, 1995b):

M9-L HNB(t)!/KKXNB(t^^ (10)

38

www.manaraa.com

IV. CONCLUSIONS

A. PROBLEMS ENCOUNTERED IN THE SRE DEVELOPMENT PROCESS

In addition to the data not being recorded in the developer's database by true failure

date, there were other challenges the LOGAIS database presented: (1) the data was not true

failure data because it was not recorded in execution time when failures occur; rather it was

recorded by administrative convenience, by batches at the end of the workday; and (2) the

data showed large swings in daily defect count not showing the expected decrease in number

of faults as time progresses. The first problem required manual intervention to sort the defect

data chronlogjcally using the database's query capability. This data then was entered into a

table for easy readability. The second problem was overcome by using smoothed data as the

input to the reliability model instead of using raw data obtained directly from the LOGAIS

database. The smoothed data was obtained by using a moving average over thirty day

periods.

B. SUMMARY OF FINDINGS

Based on the single-node reliability predictions discussed in Chapter 3, it appears

feasible to employ a software reliability model to data obtained for MCTSSA's LOGAIS

project. The Schneidewind Software Reliability Model gave predictions comparable to actual

defect counts. However, in future calculations, smoothed data would need to be employed

to obtain better prediction accuracy.

Using the multi-node configuration scenario, it appears feasible to develop a system

software model for distributed systems. The next step would be to integrate equations (8) and

(10) into the Schneidewind Software Reliability Model. MCTSSA would then need to

39

www.manaraa.com

collect system failure data in addition to defect data to support model validation.

Additionally, it would be necessary to know not only that a defect occurs but whether the

defect causes a system failure. Information would be needed about typical values for pc
and

Ps, and an indication ofwhich applications can be represented by Model 1 and which can

be represented by Model 2.

C. BENEFITS ACCRUED FROM THE PROJECT

Establishing a software reliability engineering program will improve the reliability of

software delivered to the field through reliability predictions. Additionally, the MCTSSA

SRE program demonstrates the use of developmental testing results to predict reliability

during the test phase and the need to continuously obtain software failure data for future

reliability modeling and predictions.

In today's environment of LAN-based distributed systems, there is a need for a

software reliability model that can provide management with insight into the predicted

survivability ofthe system. The adaptation of the Schneidewind Software Reliability Model

for use with multi-node configurations provides the organization with such a software

evaluation tool.

40

www.manaraa.com

APPENDIX A. MCTSSA SRE Handbook

MCTSSA SOFTWARE RELIABILITY HANDBOOK

FINAL VERSION:
January 10, 1996

Dr. Norman F. Schneidewind

LCDR Judie A. Heineman

Naval Postgraduate School

Code SM/Ss

Monterey, California 93943

Voice: 408-656-2719

Fax: 408-656-3407

Internet: schneidewind@nps.navy.mil

41

www.manaraa.com

TABLE OF CONTENTS

SECTION 1: IMPLEMENTING AN SRE PROGRAM 1

A. PURPOSE 1

B. INTRODUCTION 1

C. DEFINITION OF FAULT MEASUREMENT 2

D. MANAGERIAL IMPACT OF FAULT MEASUREMENT 2

E. COMPONENTS OF AN SRE PROGRAM 4

F. IMPLEMENTING A SOFTWARE RELIABILITY PROGRAM 6

G. SUMMARY OF SOFTWARE RELIABILITY IMPLEMENTATION PLAN ... 14

SECTION 2: BASIC CONCEPTS USED IN THE SCHNEIDEWIND MODEL 17

A. INTRODUCTION 17

B. SCENARIO 18

C. PREDICTIONS 19

1. TIME TO NEXT FAILURE 19

2. CUMULATIVE FAILURES 22

3. REMAINING FAILURES, (R), AND FRACTION OF REMAINING
FAILURES, (p) 22

4. NUMBER OF FAILURES REMAINING IN ONE MORE TEST PERIOD 24

5. TEST TIME NEEDED TO ACHIEVE DESIRED RELIABILITY LEVEL 25

6. MEAN SQUARE ERROR (MSE) 27

7. TEST TIME TO ACHIEVE SPECIFIED REMAINING FAILURES 32

8. TEST TIME NEEDED TO OBTAIN "FAULT FREE" SOFTWARE 35

9. OPERATIONAL QUALITY 35

D. SUMMARY 37

SECTION 3: TESTING METHODOLOGIES EMPLOYED 39

A. SMERFS 39

B. THE SCHNEIDEWIND SOFTWARE RELIABILITY MODEL 39

C. STATGRAPHICS 40

D. TESTING PROCEDURES 41

1. USING SMERFS 41

2. USING STATGRAPHICS 47
E. CONCLUSION 50

SECTION 4: APPLICATION OF THE SCHNEIDEWIND SOFTWARE RELIABILITY
MODEL TO MARINE CORPS LOGAIS DATA 51

A. DATA PREPARATION 51

B. MODEL APPLICATION AND ITS RESULTS 54

1

.

Defect Count Predictions 54

2. Cumulative Defect Count Predictions 56

www.manaraa.com

3. The Amount of Time Needed to Find the Defects 58

4. Results 59

SECTION 5: MODEL PROPOSAL FOR MCTSSA SYSTEM SURVIVABILITY 60

A. MODEL 1 60

B. MODEL 2 65

C. CONCLUSIONS 66

APPENDDt A. SOFTWARE DISCREPANCY REPORT 67

APPENDEKB. SAMPLE SMERFS PRINT-OUT 69

APPENDIX C. LOGAIS CHRONOLOGICAL DEFECT COUNTS 76

LIST OF REFERENCES 83

n

www.manaraa.com

SECTION 1: IMPLEMENTING AN SRE PROGRAM

A. PURPOSE:

The purpose of this handbook is threefold. Specifically, it:

• Serves as a reference guide for implementing standard software reliability practices at Marine

Corps Tactical Systems Support Activity and aids in applying the software reliability model

• Serves as a tool for managing the software reliability program

• Serves as a training aid

B. INTRODUCTION

Representing the "intellectual effort" of its authors, software includes not only the source

code, but the supporting documentation and test results. With this in mind, software is a complex

concept to evaluate and measure. Trying to predict its reliability is just as challenging.

Reliability is seen as the ability of a system to perform as expected under specific conditions

for a specified period of time. This also includes the "probability that the software will not cause

the failure ofa system for a specified time under specified conditions." (AIA93) This concept must

be matched with appropriate measurement techniques that provide a mechanism to evaluate the

software's ability to perform.

Software Reliability Engineering (SRE) is a new discipline that is maturing as more

organizations see the need to develop standard reliability practices. The American Institute of

Aeronautics and Astronautics (ALAA) defines SRE as "the application of statistical techniques to

data collected during system development and operation to specify, predict, estimate, and assess the

reliability of software-based systems." (AIA93)

www.manaraa.com

C. DEFINITION OF FAULT MEASUREMENT

As with any intellectual product, errors in design may occur. An error can be defined as "a

discrepancy between a computed, observed or measured value or condition and the true, specified

or theoretically correct value or condition." (AIA93) In software, these errors may appear while

completing requirements formulation or, as is often the case, during design, coding, and testing the

product. The software development process should include measures to discover and correct faults

resulting from these errors. [In this context, faults are defined as "defects in the code that can be the

cause of one or more failures." (AIA93)]

These measures can address reviews, audits, screening by language-dependent tools, and

several layers oftesting. One way to reduce the number and criticality of errors is by modeling the

effects of the remaining faults in the delivered product. This can be achieved through a dedicated

measurement process by which each defect or fault is noted and formally recorded for inclusion in

the reliability model. (AIA93) As a point of clarification, a fault is technically different from a failure.

A failure can be defined as "the inability of a system or system component to perform a required

function within specified limits" or the "departure ofprogram operation from program requirements."

(AIA93) In simpler terms, a fault usually leads to a failure.

D. MANAGERIAL IMPACT OF FAULT MEASUREMENT

Handling, identifying and correcting faults is a significant concern for the manager because

the entire software reliability process is expensive. "It also impacts development schedules and

system performance (through increased use of computer resources such as memory, CPU time and

peripherals requirements)." (AIA93) This addresses the key issue regarding SRE -- itprovides the

www.manaraa.com

manager with information about which he can make informed decisions. There will always be a

tradeoff between reliability, frequently referred to as the failure rate, and cost. (Cost is directly

related to testing time). The manager will need to decide on a certain level of reliability for the

product, resulting in a set cost. Thus, higher reliability will result in a higher cost. The converse is

also true.
:

In general, the failure rate of a software system is seen as a curve with a decreasing slope

which results from the identification and removal of errors as time passes. It is the primary purpose

of reliability modeling to define the shape ofthis resulting curve using statistical methodologies. The

model used in these reliability assessments can provide prediction information regarding the software

execution time needed to discover a specified number of faults, or predict the time period when the

next fault will occur. Figure 1 provides a sample software reliability curve that can be generated by

using a software reliability model. (AIA93)

Failure Rate

Test Time

Figure 1: Software Reliability Tradeoff Curve

3

www.manaraa.com

E. COMPONENTS OF AN SRE PROGRAM

A successful software reliability program does not consist ofjust a model. It also consists of

the support structure: reliability requirements, reliability measurements to meet those requirements,

data collection procedures to obtain the necessary data, definition of severity levels of failures,

applications of reliability predictions, interpretation of model predictions, and user feedback for

model improvements. Although the conceptualization of the model does not occur in a sequence of

steps as mentioned above, its implementation does. The practitioner can best understand this process

from a description of the chronology of implementing and applying the model. Therefore, this

approach will be used in explaining the process. To illustrate the process, many equations, figures,

and tables will be used. Many real-world - actually out-of this-world - examples from the Space

Shuttle will be used, because the process can be illustrated with real data and real predictions.

However, it should not be concluded that the examples are not applicable to MCTSSA; they are. The

approach is generic and its feasibility can be tested against MCTSSA systems. The Shuttle is a safety

critical system where human life and expensive equipment are at risk. This is also the case with

MCTSSA systems.

Failure data is preferred to defect data for both empirical reliability assessment and reliability

prediction using a model, because the former is a "departure of program operation from program

requirements" observed while the program is executing, and includes chronologically ordered test

start time or operation start time and.failure occurrence time, whereas defect data do not contain

this time record. Defect data are used more for administrative control to ensure that defects have been

resolved than as data for reliability assessment and prediction. However in some systems , such as

the Marine Corps' LOGAIS, only defect data are available. In this case the "reliability predictions"

www.manaraa.com

will not be as accurate as when failure data are available, but useful predictions can be made

nevertheless. Examples of such predictions for LOGAIS are shown in Section 4.

The existing methodology is based on the Schneidewind Software ReliabilityModel (SCH93,

SCH75), one of the four models recommended in the AIAA Recommended Practicefor Software

Reliability (AIA93). The validation is based on the fact the model is used to assist in assessing the

reliability of the Shuttle flight software. According to Ted Keller, Manager, Project Coordination,

Onboard Shuttle Software Systems, Loral Space Information Systems: "The Shuttle software project

is experimenting with a promising algorithm which involves the use of the Schneidewind Software

Reliability Model to compute a parameter: fraction of remaining failures as a function of the

archived failure history during testing and operation" (KEL95). Obviously remaining failures, fraction

ofremaining failures and time to next failure would not be used to the exclusion of other approaches

in making reliability assessments. These metrics would be combined with process procedures such

as inspections, defect prevention, project control boards, process assessment, and fault tracking, to

provide a quantitative basis for achieving reliability objectives. (BIL94)

The standard practices described under Implementing a Software Reliability Program are

essentially those recommended in the AIAA RecommendedPracticefor Software Reliability (AIA93)

and the ANSI/IEEE Standardfor a Software Quality Metrics Methodology (DEE93).

F. IMPLEMENTING A SOFTWARE RELIABILITY PROGRAM

Implementing a software reliability program is a two-phased process. It consists of (1)

identifying the reliability goals and (2) testing the software to see how it conforms to the stated

objectives. The reliability goals can be ideal or conceptual, e.g., zero defects, but should have some

www.manaraa.com

basis in reality. The testing phase is the most complex since it involves the actual collection of raw

defect data and molding the data to fit the selected model.

With these phases being the stated objective, the following steps should be considered by the

organization as it begins to develop a software reliability program. These steps provide a

"cookbook" approach to the SRE process and are ordinarily followed sequentially. Each step will

be discussed briefly to provide a general understanding of the purpose of each phase. Stages that

require numerical calculations and application of specific model parameters will be noted. Discussion

ofthose parameters will be deferred until Section II of this handbook: The Basic Concepts Used in

the Schneidewind Model ofthe handbook.

The SRE steps are:

State the Reliability Requirement

Establish a Measurement Framework

Collect the Data

Establish Problem Severity Levels

Estimate Model Parameters

Select the Optimal Set of Failure Data

Identify the Operational Profile

Make Reliability Predictions

Validate the Model

Make Reliability Decisions

Use Software Reliability Tools

Step 1: State the Reliability Requirement

In this step, the software manager should describe the condition that must be fulfilled for the

software to be considered satisfactory (reliable). This is a purely subjective, managerial decision. An

example of such a requirement may be the following statement: "The product will have no software

failure that would result in loss of life, loss of mission, or cancellation of mission."

www.manaraa.com

Step 2: Establish a Measurement Framework

One approach the organization could employ would be to take the software from the

developer at delivery and run it on its own systems and see how well, or poorly, it performed.

However, ifthe manager adopted this approach and waited until the software was delivered to him

and then began testing, many months could possibly be wasted if the software is deemed unreliable.

In the ideal world, he would have some indications of the system's performance before it was

delivered to him. Although this is not an ideal world, the manager does have at his disposal some

techniques he can use to get a "feel" for how the software will perform once it is delivered. He

would do this by establishing a measurement framework or plan using the fault data collected by the

developer during the product's design phase.

The organization should consider a comprehensive measurement plan that would include

indirect measures of quality like problem report counts, size and complexity metrics. Figure 2

captures this idea. In this diagram, Level 1 shows the most direct measurement (e.g., a time between

failures). These are the metrics that can be captured directly by the use of a wall clock and the

continuous running of the software. Level 2 shows an indirect measurement (e.g., discrepancy

report count) one level removed from the direct measurement. At this level a report is written

whenever a discrepancy is observed between the required operation and the actual operation of the

software. Most of these reports are derived from static analysis (i.e., inspections), although these

reports could record the fact that a failure has occurred; however there would be no data about when

tests and operations started and when failures occurred. Hence, it would not be possible to directly

calculate the time between failures. Finally, Level 3 shows an indirect measurement two levels

removed from the direct measurement (e.g., size and complexity). These are the basic attributes of

www.manaraa.com

the software itself. How many lines of code were developed? How complicated are the routines in

the program? Traditionally, the more complicated the coding, the more likely faults will appear

The advantage ofLevel 1 measurements is that they are the most accurate representations of

reliability; their disadvantage is that they cannot be collected until the software is tested. Conversely,

the indirect measurements are less accurate as representations of reliability, but they can be collected

earlier in the development process. This permits an early indication of the reliability of the software.

In addition to collecting failure data, other metrics can be collected during the software design

phase to provide the evaluator with an early indication of software quality. However, the applicability

of these metrics will need to be determined through various metric evaluation techniques. This

evaluation will indicate whether a relationship exists between the metric and the quality of the

software under evaluation. Examples ofthese metrics include the number of executable statements,

comments (non-executable code), paths, cycles, and total lines of code (total non-commented lines

of code). A complete discussion of metric evaluation is beyond the scope of this handbook. An

example of metrics application can be found in [SCH92a, WAR94].

www.manaraa.com

VY

LEVEL 1

1. Quality Factor

2. Time to Next Failure

3. Customer Oriented

4. Direct

5. Test/Operation

6. Dynamic

LEVEL 2
1. Quality Factor

2. Discrepancy Report Count
3. Developer Oriented

4. Indirect
5.AllPhases

6. Static

LEVEL 3
1. Metric

2. Size, Complexity
3. Developer Oriented

4. Indirect

5. Design

6. Static

M

l.Type

2. Example

3. View

4. Executkm/Non-Execution Based

5. Phase

6. Dependqa/Tnrlrpcndem on (of) Execution Time

Figure 2: Levels ofMeasurement

This figure also shows, on the right side, that we want to predict the quality of later phases,

using metrics that are available in the early phases. In addition, this figure shows on the left side that

we want to map from failures observed in later phases to the metrics of early phases in order to

identify the cause of the failures.

Step 3: Collect the Data

Without data, reliability predictions cannot be made. For this data collection, a Data Base

Management System (DBMS) would be helpful. For computational purposes, the file management

www.manaraa.com

system of certain software reliability tools (e.g. SMERFS and Statgraphics, which are discussed later

in the handbook) are usually adequate. However, to manipulate large amounts of failure and metrics

data, a specially designed DBMS may be beneficial. This DBMS would allow for data sorting for

various analyses and reporting purposes. This is easily accomplished by identifying the key fields of

the data (date, time offailure, type of failure, degree of failure) and relating those fields with others.

By using the DBMS's query capability, various statistics and reports can be produced by the touch

of a few keys. This data can then be properly formatted to be input into the model and further

evaluated for trends.

The elements ofthe database are shown in Table 1

.

System

ID
Days#

(since start of test)

Problem

Report ID

Problem

Severity

Failure Date Module with

Fault

Description

of Problem

Table 1 Failure Data Collection Format

For each system, there should be a brief description of its purpose and functions. The Days # field

could be noted in hours or minutes, as appropriate. It is recommended that the Problem Report ID

field be coded to indicate Software (S) failure, Hardware (H) failure, or People (P) failure.

A more detailed discrepancy report is found in Appendix A. This detailed report could be

implemented by the organization as it becomes more familiar with the Software Reliability Process.

10

www.manaraa.com

Step 4: Establish Problem Severity Levels

The organization will need to establish some consistency in describing the faults it discovers.

This will allow better analysis and classification of failures in the analysis and reliability predictions.

Some recommended severity level descriptions are as follows:

Level 1. Loss of life, loss of mission, abort mission

Level 2. Degradation in performance

Level 3. Operator annoyance

Level 4. System ok, but documentation in error

Level 5. Error in classifying a problem (i.e., no problem existed in the first place)

Note: Not all faults result in failures.

These levels should be recorded as part of Table 1.

Step 5: Estimate Model Parameters

Once a model has been chosen to be applicable to a particular system, the necessary model

parameters must be estimated, using SMERFS. For the purposes of this project, the Schneidewind

Software Reliability Model is being used. Three parameters are used in this model and will be used

for MCTSSA: a , which is the failure rate at the beginning of the testing interval "s", P , which is

the failure rate per failure, and "s," the first interval used in parameter estimation. These parameters

are discussed further later in the handbook.

Step 6: Select the Optimal Set of Failure Data

This stage selects the subset of failure data, starting with the beginning interval, "s" through

"t," the last observed interval, that will give the best parameter estimates and the most accurate

predictions. It relies on the observation that both the software process and product change over time.

Therefore old data may no longer be representative of the current and future state of the process and

11

www.manaraa.com

product and , therefore, not as applicable for reliability prediction as the more recent data. This step

is discussed in detail later in the handbook.

Step 7: Identify the Operational Profile

The operational profile describes the system's environment. It is usually discussed in terms

of modes (single node or multi node operation), frequency of use of a particular station with each

station performing a different function (e.g. Workstation 1 performing database functions,

Workstation 2 performing word processing functions), and the frequency of function execution (the

amount of time the application has been running). It includes the input variables (e.g., a listing of

available equipment or a ship's destination), the functional environment ofthe program (i.e., a specific

function the system is to perform such as sorting the available equipment by minor property number),

and the output variable (e.g., a printout of the ship's destinations for the next two months). In this

framework, a failure can be seen as a departure ofthe output variable from what it is expected to be.

(Musa, 1987). In the Shuttle example, it is appropriate to use a single software system (i.e., single

node). The applicability ofthe Schneidewind Software Reliability Model to Marine Corps multi-node

systems is discussed in Section 5 on page 60. A description ofthe attributes of this environment can

be found in that section ofthe handbook.

As part ofthe operational profile, the organization would be using the obtained failure data

and calculating the various parameter inputs to be used in the reliability model.

Step 8: Make Reliability Predictions

This step is the key to predicting the reliability ofthe software under evaluation. Each ofthe

listed predictions and the applicability to a managerial decision is described in detail in the Basic

12

www.manaraa.com

Concepts section ofthe handbook, starting on page 17. The possible predictions resulting from the

model application are:

Time to Next Failure

Cumulative Failures for a Specified Time

Remaining Failures and Fraction ofRemaining Failures

Total Failures over the Life of the Software

Test Time to Achieve Specified Remaining Failures

Operational Quality

Step 9: Validate the Model

This step evaluates the model to determine if it actually measures what the model is designed

to measure. The predicted values are compared to the actual values to make a determination ofthe

model's validity. As an example, if the model predicts the time to next failure will be two periods,

this predicted time would be compared to the actual time. Validation is achieved after certain numbers

and types of predictions have been made with a specified accuracy (e.g., average relative error of <

20%).

If, however, the values do not compare favorably, the data used in the model should be

carefully examined to identify if anything unusual can be found. If the data appears valid, and the

model prediction does not match reality, different models would need to be investigated. For the

purposes of this handbook, the Schneidewind Reliability Model will be used exclusively.

Step 10: Make Reliability Decisions

The purpose ofimplementing a reliability program is to provide the manager with additional

information through which he can make informed decisions. Reliability decisions such as "Is the

software safe enough to not cause loss of life or mission?" can be made as a result of the model's

predictions. This particular decision can be applied to the Shuttle software. Here the manager must

13

www.manaraa.com

decide whether to launch the Shuttle based on the software reliability predictions. For this example,

the predicted remaining failures must be less than a specified critical value and the predicted time to

next failure must be at least as long as the mission duration plus some safety margin. This application

will be addressed later in the handbook using numerical examples.

For any organization, the predicted software reliability can be key to the managerial decision

to accept final delivery ofthe product. Ifthe software is predicted to perform within specifications,

the software can be accepted by the organization as fulfilling the contractual obligations. If it is

predicted to fall short of the desired goals, further discussion may be needed in addition to further

testing and evaluation.

Step 11: Use Software Reliability Tools

There are software reliability tools available to make the model calculations easier to achieve.

The Statistical Modeling and Estimation of Reliability Functions for Software, SMERFS, is a

software package available for this purpose. (Farr, 1993) A sample SMERFS session is outlined in

the Testing Procedures section of the handbook found on page 41

.

G. SUMMARY OF SOFTWARE RELIABILITY IMPLEMENTATION PLAN

In summary, the first phase in the software reliability engineering (SRE) process is to state

the organization's reliability goals. These goals can be ideal or conceptual but must have some basis

in reality. A goal of "0%" defects might be the ideal objective, but it would not occur in the real

world. Imagining for the moment that it could happen, it would cost an extraordinarily large sum

ofmoney to obtain. (Recall Figure 1, the Software Reliability Tradeoff Curve).

The second phase ofthe SRE involves testing. It is here that the failure data is collected and

formatted for inclusion in the model ofchoice. The test plan used must be consistent with the goals

14

www.manaraa.com

established. If a goal is to have a maximum number of remaining failures set at less than one, then

the test plan must be able to predict the remaining number of failures in the software. The tests

provide insight into the future — what may occur as a result of using this software. This insight is

used to either forge ahead with actual implementation of the software or return to the drawing board

and reassess the system. It will provide an indication as to whether or not additional testing is needed

because the results to date may be inconclusive or show an undesirable trend. The test results also

allow the manager to prioritize his assets. It can help him to decide where he should assign his

resources. Is Module C predicted to be more reliable than Module B? If this is true, he may decide

to allocate the majority of his resources to Module B to improve its reliability.

Software reliability is an iterative process. The organization must continually update its

expectations about its software and software reliability. It should not stop with one trial run of the

model; it must continue to collect data over long periods of time for each of the systems in use. In

light of this, the organization must be constantly looking ahead. As more data is collected over

longer periods of testing and operation, this larger data set can be used in a reliability model to make

more accurate predictions for longer times into the future. It is an integral part of the SRE to have

the data stored and available in a data repository.

These steps provide the reader with the general overview of the reliability methodology that

should be carried out as part ofthe software reliability engineering (SRE) process. The next section

provides amplifying information regarding the data that must be collected, how it is analyzed by the

model, and how the results of the model can be interpreted.

15

www.manaraa.com

This page intentionally blank.

16

www.manaraa.com

SECTION 2: BASIC CONCEPTS USED IN THE SCHNEIDEWIND MODEL

In the previous section, this handbook presented an overview of the SRE process by briefly

introducing its key components. This section will further discuss software reliability predictions the

Schneidewind Model produces as a result ofthe data collected by the organization. Applications of

the usefulness ofthese predictions are briefly described. Specifically, this section gives the manager

additional information on the mathematical foundations of software reliability engineering. The

mechanisms MCTSSA can employ to calculate these predictions can be found in Section 3, Testing

Methodologies, on page 39.

A. INTRODUCTION

Data collection must be started at the design and developmental phases of the process

including any failure data obtained from the developer-run tests. Data obtained from these early

stages can then be used during the independent verification and validation phases to predict the

software's reliability. However, this data collection would not stop at the development phase; data

should be collected throughout field operations. Data obtained at this stage can be used for future

software design projects and could lend itself to further model validation.

As discussed in the earlier sections of this manual, a model is only able to make predictions

regarding the reliability of the software. These predictions can be used as a management aid for

resource allocation and identifying the need for additional testing. Tests evaluate how reliable the

software is. They measure how well the software performs compared to the desired performance

levels stated by management in the design specifications.

Modeling allows the manager to get a "feel" for how well the software will perform based on

actual data. This permits him to "look into the future" and predict how well the software will

17

www.manaraa.com

perform a week from now, a month from now, a year from now. . . The Schneidewind Software

Reliability Model addresses the optimal selection of actual test data to be used in making software

reliability predictions. The following sections describe the basic concepts used in this model and their

implications for management. Numerous examples from the space Shuttle will be used because of

the abundance of available test data . Where applicable, MCTSSA examples will additionally be

discussed.

Although an abstract discussion of the model may help some individuals understand its

applicability, the following scenario is proposed to give the practitioner an understanding of the model

application and the uses for the application results. Try to keep this scenario in mind as each of the

model components and predictions is discussed. The scenario will be revisited in the application

section ofthe handbook for further discussion.

B. SCENARIO

A manager must decide whether or not to launch the space Shuttle for a mission expected

to last ten days. He has collected failure data on the software to be used in the launch and has input

the data into the model. Based on his confidence in the model, and the predictions made by the

model, he will make his decision to launch or not.

18

www.manaraa.com

C. PREDICTIONS

The following predictions can be made by the Schneidewind Software Reliability Model:

Time to Next Failure

Cumulative Failures for a Specified Time

Remaining Failures and Fraction ofRemaining Failures

Total Failures over the Life ofthe Software

Test Time to Achieve Specified Remaining Failures

Operational Quality

Each prediction and its managerial applications are discussed in the following sections.

1. TIME TO NEXT FAILURE

(a) RATIONALE

The following section discusses the significance oftime to next failure calculations as it relates

to software reliability predictions. This information is important for the manager in that it permits him

to make an informed, educated decision on the reliability ofthe software. As a simplistic example,

ifthe predicted time to next failure is three days, but the software is scheduled to be run for ten days,

the manager can anticipate that a failure will occur before the mission is complete. He must then

decide whether or not he wants to take that risk.

(b) DEFINITION AND CALCULATION OF TIME TO NEXT FAILURE

The time to next failure can be described as the amount of time that will elapse from the

present time, t, until the next recorded failure occurs. In other words, it is the predicted amount of

time it will take for the next failure to occur. Execution time is measured from the beginning of a test.

This execution time is recorded in convenient intervals of time. As an example, a convenient interval

of time for the Shuttle program is 30 days. This will be seen on the graphs displaying calculations

19

www.manaraa.com

of time to next failure. However, an organization can set its own interval. In some MCTSSA

examples, an appropriate interval would be one week (five workdays).

Figure 3 is a tool that can be used as a management aid. It shows the predicted and actual

times to next failure for current execution times. The graph can be read in the following way. Ifwe

take a given failure, Failure 1, for example, it occurs at t = 4 (read from the x-axis); therefore, at t

= 1, the time to next failure will be equal to 3 (read from the y-axis), (4-1 = 3). At t = 2, the time

to next failure will be equal to 2, (4 - 2 = 2). At t = 4, Failure 1 occurs, so the time to next failure

is 4, (8 - 4 = 4). In this figure, we predict the time to next failure to be 4 (at t=18) for Operational

Increment A (OIA) on the dashed curve, where an Operational Increment is the software system that

flies in the Shuttle. This curve is derived from additional information and testing (using the

Schneidewind Model). Table 2 shows the failure data that was used to construct the actual part of

Figure 3.

Time to Next Failure (OIA)

30 Day Intervals
5

]
|

— jS -- >^r

1 2 3 4 5 « 7 6 9 10 11 12 IS 14 15 W 17 18 18 20 21

Actual and predicted Time to Next Failure are

obtained for given Execution Time. Failures were

observed in intervals 1-18 and predicted in 19-21.

Figure 3: Time to Next Failure

20

www.manaraa.com

Time Interval Failure Identification

Number
Time to Next Failure

1 ~ 3

2 ~ 2

3 ~ 1

4 1 4

5 -- 3

6 -- 2

7 — 1

8 2,3

9 ~ 1

10 4,5

11 — 3

12 ~ 2

13 ~ 1

14 6 4

15 ~ 3

16 — 2

17 ~ 1

18 7 ~

Table 2. Data Used to Construct Time to Next Failure Graph

21

www.manaraa.com

(c) SCENARIO REVISITED

With the Shuttle mission scheduled to last ten days, the ideal situation regarding time to next

failure would be to have the next predicted failure occur at a period oftime greater than the mission

length. In this situation, the next failure should be predicted to occur after the Shuttle has safely

returned home, i.e., the time to next failure should be greater than ten days. Although this is a

simplistic approach, and does not include other factors, it can give the manager some quick

information about the reliability of his software. Other predictions should be included in the decision

process. These predictions are discussed in the following sections.

2. CUMULATIVE FAILURES

(a) DEFINITION AND APPLICATION

Cumulative failures are the total failures predicted to occur at a specific point of time in the

future. The benefit ofthis prediction is that it can be used to anticipate the total failures, for a given

execution time, and help the manager prepare to deal with them. Also, ifthe predicted number of

failures is considered unacceptable, the software and its processes can be investigated to see where

the problems lie.

3. REMAINING FAILURES, (R), AND FRACTION OF REMAINING FAILURES, (p)

(a) RATIONALE

The number ofremainingfailures provides the manager with valuable information about the

reliability of his software. Specifically, it gives him an indication of the software's reliability by

predicting the remaining failures (undiscovered failures) that still exist in the software. With this

information, he can make an informed decision as to whether the software meets his requirements.

22

www.manaraa.com

(d) SCENARIO REVISITED

With the Shuttle mission scheduled to last ten days, and with a prediction of time to next

failure offour 30 day intervals (see page 20) coupled with a prediction ofR<1, the manager would

have confidence that the software would operate reliably during the mission. If on the other hand, one

or both of these predictions do not meet the thresholds, the manager should seriously consider

postponing the launch.

4. NUMBER OF FAILURES REMAINING IN ONE MORE TEST PERIOD

(a) DISCUSSION AND APPLICATION

The number offailures remaining in one more test period gives the manager information about

the reliability of the software during that particular time interval. This information can prompt the

manager to continue testing or to deploy the software, provided that the time to next failure and

predicted number of remaining failures are acceptable. A test period of thirty days of execution

time can be used, as is done in the Shuttle software; or it can be a calendar time of one work-week

(5 days), as is done in LOGAIS; or any other convenient measure of time.

Ifthe manager must make a decision whether to deploy the software and discontinue testing,

he will look for an acceptable value for the predicted number of failures remaining in one more test

period. Normally, this number should be significantly less than one. The ideal figure for this

calculation would be close to zero, e. g., .0001 . Ifthe value is close enough to zero for the manager,

he may decide to take the risk, discontinue testing, and deploy the software.

24

www.manaraa.com

If the number of remaining failures is high, the software will typically not satisfy the reliability

requirements.

Thefraction ofremainingfailures can be used as both a program quality goal in predicting

test time requirements and , conversely, as a indicator of program quality as a function of test time

expended.

(b) DEFINITION AND CALCULATION OF NUMBER OF REMAINING

FAILURES, (R)

The number of remaining failures is measured from a given interval and identifies the

predicted count of failures remaining in the software. If one predicts the total number of failures that

will occur in the software, the remaining failures can be predicted though simple subtraction: total

number of failures minus the number of failures found to date. Thefraction ofremainingfailures,

p, is calculated by taking the number of remaining failures and dividing that number by the total

failures predicted for the software.

(c) APPLICATIONS

Management will set guidelines on the desired value for R. Normally, R is set to be less than

one. This means that the expected number ofremaining failures that will occur from the present time

to the end ofthe software execution cycle (also known as run time or "mission time") should be less

than one. Ifthe predicted value for R is greater than one, this indicates that the software could contain

remaining faults and failures that are unacceptable. If the system is mission critical or has the

potential to cause harm to human life, the prediction of R >1 should tell the manager that there

would be serious risk if he uses the software as it is currently designed.

23

www.manaraa.com

5. TEST TIME NEEDED TO ACHIEVE DESD3ED RELIABILITY LEVEL

(a) DISCUSSION

This information provides the manager with an estimate of the amount of time needed for

software testing to achieve a given level of reliability, similar to time needed to obtain "fault free"

software. This calculation is based on two key computations: the fraction of remaining failures, "p,"

and the predicted maximum number of failures over the life of the software, which was previously

described (see page 23).

(b) CALCULATIONS

(1) Maximum Failures

The predicted maximum number of failures over the life of the software (T=°°) is defined as:

F^^a/p+Xs.! where Xs_ 1 is the failure count in the range l,s-l (i.e., incuding the first failure count

interval and up to and including the interval prior to interval "s".

The benefit of this prediction is that it provides an indication of the total failures and faults

that will occur over the life ofthe software. Thus the software manager can be alerted during test that

there could be problems with the software during operation. Also, total failures are used in the

prediction of remaining failures.

(2) Remaining Failures and Fraction of Remaining Failures

The predicted number of remaining failures is: R(t)=(a/p)-Xst=F(°°)-Xt,
where X,., is the

observed failure count in the range s,t and X, is the observed failure count in the range l,t, where "t"

is the last observed failure count interval. As already mentioned, the benefit of this prediction is that

it may indicate residual or remaining problems with the software. Furthermore, fraction ofremaining

25

www.manaraa.com

failures, (p=R(t)/F(°°)), can be used as both a program quality goal in predicting test time

requirements and, conversely, as an indicator ofprogram quality as a function of test time expended.

(c) APPLICATION

Figure 4 provides an example ofthe Shuttle Primary Avionics Software entity designated OIA

and illustrates how/? might behave as increased test time is applied (represented by "test intervals").

From this type ofinformation a program manager can determine whether more testing is warranted,

or whether the software is sufficiently tested to allow its release or unrestricted use. Note that

required test time rises very rapidly at small values ofp and R(t). Note. You should read the test

time from the left axis as a function of p, and read the remaining failures from the right axis, as a

function of p. Do not combine a value from the test time axis with a value from the remaining

failures axis.

26

www.manaraa.com

Test Time

-Remain Failures

>

2
a
i—

i

at

O

©
S

a
o

"•«3

3
O

Parameter Estimation Range:
1-18, s=9

160

/
/

5

4
12(i

/
3

80

/
/

2

40
/

/
:l

o:

0.1 0.2 0.3 0.4 0.5

50

u«

c
a
«»

a

O
u
o
X>

s
s

Remaining Fraction of Failures (p), OIA

Figure 4: Test Time for Given Remaining Failures

6. MEAN SQUARE ERROR (MSE)

(a) APPLICATION

This section is included here for continuity purposes in discussing the components of the

Schneidewind model. Although MSE is not a "prediction" as are the other numerical calculations

previously discussed, its determination is key to the success of the model. It is an important

statistical value that must be calculated to determine the correct numerical inputs for the model.

Data used in the model is collected from the beginning of the project cycle. However, the

software and process used in the software development can change over time. Old data may not have

27

www.manaraa.com

the same relevance as it had when it was "new." For this reason, one may want to ignore "old" data

in favor of "new" or more recent data. It may be possible to obtain more accurate predictions of

future failures by excluding or giving lower weight to the earlier failure counts. The MSE identifies

the time interval where this distinction should be made. There are three types of predictions where

MSE can be applied: cumulative failures, time to next failure, and remaining failures.

(b) DEFINITION

The MSE minimizes the sum ofthe variance and the square of the bias of predicted failures

(or time to next failure). It is a statistic that computes the sum of the squared differences between

model predictions and actual cumulative failure counts in the range of s, t. This value is used to select

the optimum value of the interval where measurements will begin. The following sections describe

the computations needed for calculation ofMSE. They should be read by the interested reader who

desires a mathematical understanding ofthe calculation process. Other readers may proceed to page

32, Test Time to Achieve Desired Specified Remaining Failures.

(1) Mean Square Error Criterion for Cumulative Failures

The Mean Square Error (MSEp) criterion for cumulative failures is used to select the optimal

value of s (i.e., the value of s that results in the minimum value ofMSEp). The result is an optimal

triple (P, a, s). The MSEp computes the sum of the squared differences between model predictions

and actual cumulative failure counts X«.
4
in the range s<i<t, where X^fOSj-X,.!.

E [a/p(l-exp(-p(i-s+l)))-X
sJ

2

MSE^-
S4J

i-s

t-S+1

28

www.manaraa.com

Figure 5 shows an example ofMSEp in both the parameter estimation range 1,20 (MSEp

computed prior to prediction) and the prediction range 21,30 (MSEp computed after prediction).

Because the latter MSEp is a minimum at s=l 1 ~ the same as the former ~ it confirms that s=l 1

would have been the best interval to start using the failure data.

I Legend

Range:21-30
L_

1*

2 044-
t 0.44

n

i3

a
a
«9

2 "*"
X

X
X
X

X
X
X
X
X

*•-

X
X
X
X

-0.1- 1

J
—[- — -

1

Starting Interval (s)

Figure 5: Prediction 21-30. Parameter Estimation 1 -20

(2) Mean Square Error Criterion for Time to Next Failure(s)

The Mean Square Error (MSEp) criterion for time to next failure(s) is defined similarly and

is given by:

29

www.manaraa.com

£ [Dog[«/(«- PCX .^i/p-a-sa)]-^

mset
=-^-

for (o/PKX^Fp

(J-s)

The terms in MSET have the following definitions:

i: Current interval;

j: Next interval j>i where Fy>0;

Xj i: Cumulative number of failures observed in the range s,i;

Fy: Number of failures observed during j since i;

Tij! Time since i to observe number of failures F
s
during j (i.e., T^j-i)

t: Upper limit on parameter estimation range; and

J: Maximum j < t where F^O

.

Figure 6 shows both MSEj- and Mean Relative Error (MRE=Ei (| Xj-F;
|
DQ/N for N intervals)

versus s for the post-prediction range. The same MSEj result was obtained for the observed range.

In this case, s=5 was identified as best prior to prediction but s=6 turned out to be best after

prediction.

30

www.manaraa.com

o -

Legend
-0.8

J

MRE MSE

> ^^"*--»^^^
\ ^"**~——«^^ -0.7

2.5
\
\

V

>
\ -0.6
\

\

-""^
•» \

hi 2
•i

03
x

5 \ -0.5

^"^
l_
o N

t \
UJ v

1 c

£
5 \ -0.4

<Q
N

3 %

IT \

W \c % -0.3
CO *

<D 1

%
%

s 1

**-»
% \ . _ - -

-03

5

o-

-0.1

-0

Starting Interval (s)

Figure 6: MSE and MRE: Time to Failure

9
3

I
fi>

m
§

m

(3) Mean Square Error Criterion for Remaining Failures

The Mean Square Error (MSEr) criterion for number of remaining failures is given by:

E [F(i>Xj

MSER
=-^-

t-s+1

where F(i) is the predicted cumulative failures at time i and Xj is the cumulative observed failures at

time i.

31

www.manaraa.com

It should be noted that parameter estimates and MSE evaluations are model setup operations

~ not predictions ofthe future. Rather, during setup, the model is tuned to obtain the best estimates

ofthe parameters by making the best fit of the model to the observed failure data (MSE). Once this

has been accomplished, the model is ready to be used for future predictions.

7. TEST TIME TO ACHIEVE SPECIFIED REMAINING FAILURES

(a) DEFINITION

The predicted test time required to achieve a specified number ofremaining failures, where

R(t2) is the specified number of remaining failures at t2, is:

Vtlogfa/CPtRC^Wyp^s-l)

(b) APPLICATION

This concept is shown in Figure 7 for 01A, where remainingfailures=. 6 at t2=52 is marked.

This value of t2 also is in the region of the graph where further increases in t2 would not result in a

significant increase in reliability. The value of this prediction is that software managers can: 1) plan

for the amount oftest time necessary to achieve a specified reliability goal and 2) determine whether

the reliability goal will be achieved with a given amount of test time.

32

www.manaraa.com

0)

2

<0 3
li-

ra
c

1 2

E
<D

1
-

-

Duraton+batety Facte
isston
or

EXAMPLE:
(R=.6, t2=52)

40 80 120 160

Execution Time (30 Day Intervals)

Figure 7: Remaining Failures vs. Test Time

Another type of analysis that can be made with test time is shown in Figure 8 where t2 is plotted as

a function of p for three modules. The benefit of this prediction is that the software manager can

predict how much test time should be allocated to each module to achieve a given level of reliability,

as specified by p. For example, in Figure 8, for a given p, Module 3 will require the most test time.

Conversely, for a given t2 this module will have the worst reliability (SCH 92).

33

www.manaraa.com

These figures can be used as management decision tools. The graphical representations of

test time predictions provide the manager with valuable information. He can use this information to

67
I

t 1 1 1 1

1 '
'

1 | 1 1 1 | 1 1 -

"
\

;

w" \

"O
\

057
\

-

©
Q_ 1

\ .

09
. \>

\

—
Module 1 .

W7
- V \

"" Module 2 -

, \ _
Module 3

_

E V>
^

.

h-
\ \
\ 1 \ .

c y \ .

as 37 \ ~
v \ —

3 \ \ N.

O \ v S.

O ^\ V
v '"-* .

UJ
^\ \ -

^S. ~_ "*""
- ^ .

a 27

-

--_„_ — -. -

17
1 1

0.02 0.04 0.06 0.08

p: Remaining Failure Fraction

0.1

Figure 8: Execution Time to Reach Fraction ofRemaining Failures

allocate his resources to include additional test time and personnel. These decisions will be based on

his priorities and the predicted software reliability.

34

www.manaraa.com

8. TEST TIME NEEDED TO OBTAIN "FAULT FREE" SOFTWARE

(a) DISCUSSION

"Fault Free" software can be described as software where the remaining number of failures

over the life of the software is, for practical purposes, "zero," (e. g. .0001). There would be no

failures remaining in the software. The predicted test time required to achieve a specified number of

remaining failures is calculated through the Schneidewind model.

(b) APPLICATIONS

This value can provide management with an approximate time value, and hence, dollars, it

would take to test the software until there are "zero" failures remaining. He may decide to allocate

all his resources to testing this particular piece of software, or he may decide to stop testing and send

the software back to the developers for repairs and modifications.

9. OPERATIONAL QUALITY

(a) DEFINITION

The operational quality of software is defined as: Q=l-p (Where "p" was defined as the

fraction of remaining failures).

This equation is a useful measure ofthe operational quality of software because it measures

the degree to which faults have been removed from the software, relative to predicted totalfailures.

Operational Quality is plotted against Execution Time in Figure 9. We again observe the asymptotic

nature of the reliability-testing relationship in the great amount of testing required to achieve high

levels of quality.

35

www.manaraa.com

Execution Time (30 Day Intervals)

Figure 9: Quality versus Test Time

(b) APPLICATION

When management is provided with this information, it can make trade-off decisions regarding

quality and cost (inspection time). Higher quality will require more inspection time. The converse

is also true. The manager can inspect the trade-offcurve and decide where he receives the best gains

for his investment. The curve will eventually show decreasing marginal gains.

36

www.manaraa.com

D. SUMMARY

This section provided some background information on the types of predictions available by

employing the Schneidewind Software Reliability Model. It also gave managerial applications for use

of the predictions. Key to this section was the data. For without data, no predictions would be

possible. It cannot be emphasized enough how important it is to collect data as early in the

development process as possible.

The next section will discuss how an organization can make the predictions discussed in

Section 2 by using certain software packages. Additionally, application ofthese predictions to the

Shuttle program will be discussed.

37

www.manaraa.com

This page intentionally blank.

38

www.manaraa.com

SECTION 3: TESTING METHODOLOGIES EMPLOYED

The following section discusses the three key components to making software reliability

predictions. These components include the two software packages that make the necessary

calculations easier to compute (SMERFS and Statgraphics) and the reliability model itself

(Schneidewind Software Reliability Model).

A. SMERFS

StatisticalModeling andEstimation ofReliability Functionsfor Software (SMERFS),

not the little blue men from outer space, is a software reliability modeling tool that can be used to

gain insight into the reliability of the software being tested. SMERFS is a tool that implements the

models developed by Schneidewind and a number of other software reliability researchers. Using the

Schneidewind Model component of SMERFS, two types of predictions can be made: for a given

number of time intervals, how many failures will occur? secondly, for a given number of failures,

how many time intervals will be required for the failures to occur? After inputing the software failure

count data, usually from an input failure data file, the first step is to determine the optimal starting

value for "s" as determined by the table ofMSE values; usually the "s" with the minimum MSE will

be selected.

B THE SCHNEIDEWIND SOFTWARE RELIABILITY MODEL

As stated above, SMERFS is a statistical software tool that can perform various calculations

on an input failure data file to predict both the number of failures and the time to next failure.

However, before these calculations can be made with the Schneidewind Software Reliability Model,

SMERFS must calculate the Mean Square Error, as previously discussed on page 27 to determine

39

www.manaraa.com

the optimal starting interval, "s," which corresponds to the minimum MSE between predicted and

actual values of failure counts or time to failure.

C STATGRAPHICS

Because SMERFS does not contain all the equations used in the model, we have implemented

some equations in Statgraphics (version 5.2 for DOS, which can run under Windows). Statgraphics

is a software tool designed to aid in calculations of mathematical formulas and provides statistical

analysis and graphing capabilities. This tool is used to predict the required test time to achieve a

desired reliability level, using the following formula:

V[log[a/(p[*(g])]]/p +(s-l)

The values for alpha, beta, and "s" are retrieved from the data collected using SMERFS. In addition,

the MSE for remaining failures,

MSER=-
t-s+1

is not implemented in SMERFS but we have implemented it in Statgraphics. Additional equations that

are implemented in Statgraphics are the following: Cumulative Failures, Fraction Remaining Failures,

and Program Quality.

40

www.manaraa.com

D. TESTING PROCEDURES

Using SMERFS, one can address the following two objectives: (1) Why and how a reliability

model can be used to predict execution time to next failure, and (2) Why and how a reliability

model can be used to predict how long the software should be tested in order for it to be "fault free.

"

The following instructions for SMERFS will achieve these objectives.

1. USING SMERFS

Although most ofthe instructions for SMERFS show up on the computer screen and are self-

explanatory, the following amplifying instructions will assist the first-time user in successfully

completing his session. See Appendix A to follow along with the SMERFS printout. User inputs

are highlighted (in bold print) for ease of use. Note. Calculation results should be rounded to no

more than one or two decimal places, because reliability cannot be predicted with greater precision.

However, to be consistent with the SMERFS printouts in Appendix A, the results shown in this

section will be left as calculated.

a. Once SMERFS is accessed, the first input required from the user will be the name

of the file where he would like the SMERFS output (results) stored. As an example, a:\smerfsl

would store the resulting SMERFS ASCII file on the computer's A-drive if a disk is inserted. This

will make data retrieval easier once the session is complete. The user can then access his "output"

file via a word processing program, format the data as he wishes, and print the results.

b. The user will then be asked if he would like to store a plot file for later retrieval.

The recommended answer for this question is 0, (zero), meaning "No".

c. SMERFS will next require the failure data type the user will be working with. At

this point the user will enter 4, for the interval failure counts and testing lengths.

41

www.manaraa.com

d. Now he will be asked to enter a 1 for the standard SMERFS file input. This

should be followed by the name of the file where his sample data is stored, for example, a file name

of oi618.in. [This sample file contains the number of failures recorded against an operational

increment (01) ofthe Shuttle. This OI consists of a build of various modules in the Shuttle software

library. There are 18 count intervals in oi618.in Each interval is 30 days of continuous execution

time.]

e. This step will ask the user how he would like the input displayed. The recommended

response is to enter a 3. This entry will show a table of all the data input through the oi618.in file.

However, the user may enter a to display a list of his options at this point.

f. Following the display of data, the same question will reappear regarding the input display.

This time the user is recommended to enter 4 to take him to the SMERFS main menu. He will then

be asked ifhe would like to make some new data files. He should enter a to void the data restore

option.

g. He should then enter to display the listings available at the main menu. This will

present him with nine choices. He should select option 8 (Executions of the models).

h. Upon this selection, the user will then enter a to display the available count model

options. He should select option 4 (The Schneidewind Model).

i. The next displays will permit the user to see descriptions of the model or the treatment

type. For these options, a should be entered for each option unless he desires the descriptions.

j. The next step will be to investigate the "optimum s" from the various count intervals input

into the program. A 1 should be entered here. He will then be asked to enter the range over which

"s" should be tested. In general, the user should enter the range ofthe input failure data (i.e., 1,18

42

www.manaraa.com

for this application). However for this application, we had previously determined that SMERFS could

not compute values for MSE for "s" greater than 9. Therefore for this specific example, the user

should enter 1,9. This entry will display the table of s, beta, alpha, WLS, MSEp and MSE T . The

last two terms are the mean square error, as a function of "s", for number of failures and time to

failure predictions, respectively (ignore the "WLS" column).

The user should note the table results and select those values for "s" which give him the

smallest MSEp and MSE T .

TIME TO FAILURE PREDICTIONS

k. After the user is comfortable with the data presented in the table, he should enter to

conclude the table presentation. He will then be asked to enter the desired model treatment number.

He should enter 2. For the number of associated values of "s" he should enter the corresponding "s"

value that gives the smallest MSE T, for time to failure prediction. In this example, the minimum

value for MSE T is seen for "s" equal to 5. A 5 should be entered. This entry will result in a display

ofmodel estimates. Ofnote in this display should be the total number offailures, and the remaining

number offailures. (Total number of failures: .11722E+02; Remaining number of failures:

. 17221E+01). These values, as discussed previously, provide the manager with information regarding

the reliability of the software he is testing. He should record these values for future use in this

demonstration.

1. The user will then be prompted to select from two options regarding future predictions.

For the sample run, he should select 2 for the prediction of the number of periods needed to discover

the next "M" failures. This will allow him to determine the value of "M". He should enter a 1. The

result will predict the number of additional test periods required to discover one more failure. A

43

www.manaraa.com

result of 6.3443 periods results (190.32 days). This implies that the time to next failure, from the

present time, will be 190 days.

m. When asked to enter a value ofM, the user should enter 0. The user will be prompted

again to enter a to end the current predictions.

NUMBER OF FAILURES PREDICTIONS

n. This step moves the user into predicting the number of failures that will occur in one more

test period. He will be prompted to enter the model treatment number. He should enter a 2.

o. He will then be prompted to enter the associated value of "s" he would like to investigate.

He should enter the "s" value corresponding to the minimum value for MSE F he recorded earlier.

For this example, the value of 6 should be entered. This entry will produce a listing similar to the

listing produced in step j. As in step j the key values obtained here are the total number offailures,

the number corresponding toplus those skipped, and the number offailures remaining. Ifthe value

forplus those skipped is not equal to zero, this value must be added to the total number of failures

and the number of failures remaining. The user should record these values. The example values

correspond to

Total number of failures: 14.363

Plus those skipped: 3

of failures remaining: 4.3626

p. The program will present the user with two options for data evaluation. He should choose

option 1 for the number of failures expected in the next testing period. He will be prompted to enter

the number of periods to examine. He should enter a 1. This will display the number of failures

44

www.manaraa.com

expected. For this example, it will be .36888. This implies that the number of remaining failures

occurring in the next execution cycle (30 days) will be .37. This is the final SMERFS calculation.

q. The user can exit the program by entering the following values in sequence: to end

period to examine, to end predictions, followed by a 4 to terminate the model execution, to

conclude analysis ofmodel fit, for count model options, 6 to return to the main menu, for a list

of main module options, and finally, 9 to stop execution of SMERFS.

(1) INTERPRETING SMERFS RESULTS

Using the sample file and the SMERFS software, the following results were achieved:

Time to Failure Data ('V = 5):

Time to next failure (from present time): 6.34 periods (190 days)

Number of remaining failures (from present time): 1 .72

Total number of failures: 11.7

Calculatedfraction ofremainingfailures. .15

Time necessary to reduce the remaining failures to .0001 : 71 .76 periods (5.9 years)

Number of Failures Data ("s" = 6):

Number of remaining failures (from present time): 7.36

Total number of failures: 17.36

Calculatedfraction ofremainingfailures. .42

Number of failures that will occur in one more period: .37

Note: Because in this example s=5 was optimal for time tofailure predictions and s=6 was optimal

for number offailures predictions, different results are obtained for number ofremainingfailures

and total number offailures. Because MSEp applies to failure count quantities like these, the values

obtained for s=6 should be used in this example (i.e., number of remainingfailures=l.36 and total

number offailures= 1 7.36).

These results provide the manager with useful information regarding the reliabilty of his

software, provided he looks at all the data as complementary information. He should not make a

decision based on only one piece of the above information, rather, he needs to look at the data in its

entirety.

45

www.manaraa.com

(2). SCENARIO REVISITED

A manager must decide whether or not to launch the space Shuttle for a mission to last ten

days. He has collected failure data on the software to be used in the launch and has input the data

into the model as described in the above sections.

Looking at the data in its entirety, he should not launch the Shuttle. Even though the time

to next failure is predicted at 190 days and only .37 failures are predicted for the next interval (30

days giving the mission a cushion of 20 days), the predicted number of remaining failures is 7.36.

This is a significantly high number. (As discussed previously, the manager desires this number to be

less than one.) The time to make the software virtually failure free is 72 periods, a long time! The

decision must be based on the available model evidence, his confidence in the model, his risk aversion,

and any other factors at his disposal. Using only the data from this analysis, the overriding factor of

7.36 possibly life-threatening remaining failures, the manager should not launch the Shuttle.

46

www.manaraa.com

2. USING STATGRAPHICS

Statgraphics is used to augment the reliability predictions obtained from SMERFS. Equations,

like the one for tj below, can be created using the Statgraphics equation editor feature. Of particular

interest in this phase ofthe predictions is the formula for computing the test time required to achieve

a given reliability level. As discussed in earlier sections of this handbook, this amount of test time

is defined by the following equation:

f
2
=[k>g[a/(p[/?(/

2)])]]/|}
+(s-l)

Based on the way this equation is implemented in Statgraphics, the user must first calculate/?, the

fraction of remaining failures, for each of the desired number of remaining failures, R(t2). For this

example, R(t2) will be one, two, three, and four.

a. Once Statgraphics has been accessed, the user will be presented with a menu showing

various options for calculations and presentations. He will depress the F8 function key which will

cause a new screen to be superimposed on the menu. Here, he will type "exec" for the execution

screen to appear.

b. Once the blank screen appears, he should type t2 at the colon prompt if he wants to see

the equation before he uses it in a calculation. Otherwise, he can skip this step. This will display the

above ^ equation which has already been preloaded for the user. For Statgraphics to calculate the

numerical value for this equation, the user must input the values for alpha, beta, Xs, s and p. The

alpha, beta, and s values correspond to the values obtained from the SMERFS session for the

smallest MSEp value. TheXs value is the number of failures observed prior to s=6 from the same

47

www.manaraa.com

SMERFS session ("plus those skipped" in SMERFS); the p value is the desired number for the

fraction of remaining failures for remaining failures of one, two, three, and four.

c. The user will now enter the above mentioned values in the following format for one

remaining failure:

alpha GETS .73825

beta GETS .051401

Xs GETS 3

s GETS 6

pGETS(l/(EVALFt))
EVALt2

P

These commands will display the value for the test time required to achieve a given reliability level.

For this input, the predicted test time required to achieve the reliability level of having one remaining

failure is 56.84 thirty day intervals. This will correspond to a fraction of remaining failures equal to

.0575952. For the remaining failures equal to two, three, and four the following commands must be

entered:

p GETS (2/(EVAL Ft))

EVALt2 Results: t2 is 43.35

p pis. 115

p GETS (3/(EVAL Ft))

EVALt2 Results: t2 is 35.47

p pis. 173

p GETS (4/(EVAL Ft))

EVALt2 Results: t2 is 29.87

p p is .230

The above results could be plotted to compare the effect that changing the remaining failures

has on the amount of test time needed to achieve that end. An asymptotic relationship is seen

between t2 and the fraction of remaining failures, p. Figure 10 is a sample graph that could be

obtained.

48

www.manaraa.com

60

55

50

2
45

C
.2 40
3u
<D

ffi
35

30

25

\

\
\

0.0575952

\
\

\

Legend

Test Time (Y1)

RemFailures (Y2)

3.5

2J

3
0)

2.5 (Q

TI
0)

2 fl>

0)

1.5

0.11519 0.172786

Remaining Fraction of Failures (p)

ro.5

0.230381

Figure 10: t2 and R versus Remaining Fraction of Failures (p)

(1). APPLICATION

With this information, the manager could gain insight into the predicted amount of time it

would take to achieve given reliability levels. Using the scenario mentioned previously, as an

example, one could see that it is predicted to take almost 57 periods (totaling 4.7 years) from t=0 to

reduce the fraction of remaining failures to .058. The test time curve indicates that there will be a

point where there are only marginal returns achieved by additional testing.

Looking at the shape ofthe curves on Figure 10, the software manager must understand that

as predicted reliability increases (the number of predicted failures decreases) there will be a significant

49

www.manaraa.com

increase in the amount oftesting time needed to achieve those results. There will come a point were

the additional cost of testing will result in only minimal gains in reduced software failures. The

manager must make the decision whether to stop testing and deploy the software, based on available

funding for testing and the desired reliability levels.

E. CONCLUSION

Management must use all resources available to it to come to a sound, information-supported

decision. The model is only a tool to help make this decision. The predictions provided by the

Schneidewind Software Reliability Model can give management additional information on the

predicted reliability of its software. This can be accomplished by both the developer and implementor

using the software reliability engineering process that has been described in this handbook. Using

appropriate failure data, the predictions can be used to help make an informed reliability decision.

However, the final decision must be made by the manager based on all the information he has

available to him.

50

www.manaraa.com

SECTION 4: APPLICATION OF THE SCHNEIDEWIND SOFTWARE RELIABILITY
MODEL TO MCTSSA LOGAIS DATA

A. DATA PREPARATION

In the development ofthis research project, MCTSSA obtained a database of compiled defect

data from the contractor. This database, Software Edge's Defect Control Systemsfor Windows,

Version 2. JO, contained all the defect data the developer recorded on the software during its design.

As a database, the software provided a query capability which was used extensively to draw out the

appropriate data for inclusion in the Schneidewind Software Reliability model. This data was the

number of defects recorded during an interval, one day, by date the defect was submitted to the

database. This data was then formatted chronologically (by a workday, not calendar day since defects

were only listed during normal working hours) for inclusion in a table for easy of readability and

analysis. This date sequencing permits reliability predictions to be made. All of the 4584 defects

from November 1 1, 1994 through May 17, 1995 are listed in Appendix C. A determination was made

to group the data by five day increments (to simulate the typical work week); this is reflected in

Appendix C.

In addition to the data not being recorded in the database by true failure date, there are other

challenges the LOGAIS database presented: (1) the data was not true failure data because it was not

recorded in execution time when failures occur; rather it was recorded by administrative

convenience, by batches at the end of the workday; and (2) the data shows large swings in daily

defect count (Figure 1 1) not showing the expected decrease in number of faults as time progresses

(recall Figure 1).

51

www.manaraa.com

Defects vs. Interval
250

S 200

1 5 9 13 17 2125 29 33 37 4145 48 53
Interval

Figure 1 1 . Defect Count vs. Time Interval

I£ however, the data is averaged over five day intervals, a decreasing trend does emerge but

there are still some unanticipated peaks and valleys. This trend can be seen in Figure 12.

Average Defects vs. Interval

(Interval = 5 work days)

CD

I
1 23456789 10 11

Week (5 Workdays)

Figure 12. Averaged Defects vs. Typical Five Day Work Week

52

www.manaraa.com

Ifthe data is smoothed out even further by using a "moving average" of 30 days, a decreasing

trend is seen. This is shown in Figure 13.

[P@ri©d - 30 dap

3
40

1 1

1

1 1 1

1

1

1

1 1 1 1 1

1

M 1 1 1 1 1 1 1 1

1

1 1

1

1 1 1 1 1 1 1

1

1 1 1 1 1 1 1

1

1 1

37 41 45 41

(J

Figure 13. 30 Day Weighted Average ofNumber of Defects Recorded

These views of the data show the plausibility of using smoothed data as the input to the

reliability model instead ofusing raw data obtained directly from the LOGAIS database. In this test

ofthe data, raw LOGAIS data (the normal approach) did produce fair predictions. Further studies

using smoothed data versus raw data would need to be completed and compared to demonstrate if

any trends or accuracies are affected by the choice of data used.

This section will discuss the actual application of the Schneidewind Software Reliability

Model and the inputs required to obtain meaningful results. A comprehensive discussion of the

model parameters, inputs, and results can be found in previous sections of this handbook.

53

www.manaraa.com

B. MODEL APPLICATION AND ITS RESULTS

In order to obtain the most accurate model parameters, both one day and five day intervals

were used. By comparing the Mean Square Errors (MSE) ofthese two intervals, it was seen to favor

the five day cycle. Also varied were the length of the input data recorded in the range t = 20, 55 for

one day intervals and in the range t = 13,20 for five day intervals, and used the value of the MSE to

determine the optimal value for "t."

1. Defect Count Predictions

As previously mentioned, it is advantageous for management to know what the predicted

reliability of the software is to help estimate additional testing time needed. This also allows for

proper resource management, i.e., assignment or not of a greater number of personnel. This

prediction can be achieved through the model's outputs for the predicted number of defects in a

selected interval range. This interval range can vary, but is seen as an interval oftime in the future,

that is, "how many defects are predicted to occur in the next two work weeks?" This was

accomplished through the application ofthe following equation in SMERFS:

FfeKa/P)[l-exp(- p ft-s+lffl-X^

where this equation is the predicted number of defects in the interval range t1?t^ s is the optimal

interval to start using defects for the estimation of a and p; and X. tl
is the observed number of

defects in the range s,^. Here tj is defined as t, the end of the parameter estimation range, and t2 is

the prediction interval. The results obtained showed that t = 30 gave relatively good predictions as

can be seen in Figure 14.

54

www.manaraa.com

8

2

Predicted Defects versus Actual Defects

Since Defect Submit Day 30

Actual

Predicted

S=23.t=30

Defect Submit Day

Figure 14. Predicted Defects vs Actual Defects

To determine "s," the following equation was used (via SMERFS):

MSE^
£ [a/p(l-«p(-p(i-s + l)))-XM]

:

is

t-S + l

(2)

This equation calculates the MSE for defect counts and cumulative defect counts. "It computes the

sum ofthe squared differences between model predictions and actual cumulative defect countsX^ in

the range s<kt." Here, s = 23 was optimal for t = 30.

Figure 14 illustrates the prediction of (1), starting at t = 30 and predicting for t2
= 35, 40,

45, 50, and 55 days, where these represent predicted defects in the intervals 5, 10, 15, 20, and 25

days, respectively, from t = 30. It is seen that the predictions appear good until t2
=55 when the

55

www.manaraa.com

actual defect count takes a sharp turn upward. This is counter to what one would expect ~ a

decrease in the rate offinding defects as testing continues because the defects become harder to find.

When this occurs, it indicates the need for using more of the available data, re-estimating the

parameters, and repeating the predictions.

2. Cumulative Defect Count Predictions

As part ofa proactive management practice in software reliability, it is advantageous for the

manager to be aware ofthe cumulative count of defects predicted in the software. This information

can be used similarly to the defect count predictions but gives a better indicator of the degree of

testing problems encountered to date. For this calculation, Equation 3 was used through

Statgraphics:

F(T)=(a/p)[l-exp(-p(T-s+l))]+X,
1 (3)

where X^ is the defect count in the range l,s-l

.

The results ofthis calculation did not produce a single curve that accurately matches the true

count of cumulative failures. However, upper and lower bound curves were generated as seen in

Figure 15.

56

www.manaraa.com

Predicted Bounds of Cumulative Defects

versus Actual Cumulative Defects

T3

&
8
1

3
E
3o

5800
""""

Actual
"*" Upper
"*"

Lower

4800

S=10,t=20 *S
3800

2800

^•^8=23,1=30

1800
i i i

: I i

35 55 75 85

Defect Submit Day

115 135

Figure 15. Predicted Bounds of Cumulative Defects vs. Actual Defects

57

www.manaraa.com

The concept ofbounding is important in prediction because the manager would like to know within

what limits a quantity is likely to fall. Figure 16 shows that the predicted cumulative defect count for

day 129 (May 17, 1995) would fall between 3978 and 5047. The true cumulative defect count for

that date is 4584.

3. The Amount of Time Needed to Find the Defects

Each of the previous calculations focuses on the issue that given a specific time interval, as

an example, the next two work weeks, how many defects would we predict to occur? A corollary

to this question can be proposed. "How much time would it take to find a specific number of

defects?" Equation 4, implemented in SMERFS can be used to help answer this question.

for (a/PMX^F,)

where (4) is the predicted time (intervals) until the next F
t
defects are found, t is the current interval,

and Xj, is the cumulative number of defects observed in the range s,t. s = 23 and t=30 were used to

produce Figure 16. (The rationale for selecting the proper t and s can be found in Section 2 of this

Handbook.) Since the defect count is cumulative, F^ the time to find the defects increases with time,

as can be seen in Figure 16. This is expected since it will take longer to find defects as time passes.

The predicted and actual values are comparable until Day 55, when there is an upward increase in

predicted time to find the defects. As before when this occurred, there is a need to use more available

data, re-estimate the parameters, and repeat the predictions.

58

www.manaraa.com

Predicted vs Actual Time to Find Defects

Since Defect Submit Day 30

43 47 5J

Defect Submit Day

Figure 16. Predicted vs. Actual Time to Find Defects

4. Results

Based on the above predictions, it appears feasible to employ a software reliability model to

data obtained for MCTSSA's LOGAIS project. The Schneidewind Software Reliability Model gave

predictions comparable to actual defect counts. However, in future calculations, smoothed data

would need to be employed to obtain better prediction accuracy.

59

www.manaraa.com

SECTION 5: MODEL PROPOSAL FOR MCTSSA SYSTEM SURVIVABILITY

This section will present a proposed model for use by MCTSSA with its system survivability

predictions (multi-node configurations). This is in contrast to the previously discussed single node

survivability concepts presented in Section 2 of this handbook. Two models take into account

different possible system configurations and the impact of server and client failures. These

configuration setups can be found in Figures 17 through 19. Of note, this section does not present

any actual calculations using MCTSSA test data. It only presents concepts that need to be further

evaluated and tested. However, the manager can review this section to better understand the various

uses for the Schneidewind Software Reliability Model and its applicability to his organization's

system design and configuration.

A. MODEL 1

In this situation there are critical clients: clients with critical functions (e.g., network

communication) that must be kept operational for the system to survive. There are also non-critical

clients with non-critical functions (e.g., data base query). These clients also act as a backup for the

critical clients. The system does not fail unless all the non-critical clients fail and one or more critical

clients fail, or one or more servers fail.

1. Client or server failure: the application software or operating system in the node ceases

to function and the client or server is lost to the distributed system, as a result of a software failure.

2. System failure: the system ceases to be operational because either a. all non-critical clients

fail AND one or more critical clients fail OR b. one or more servers fail.

3. Nn(t): The number of non-critical clients available in the system at time t, where Nn(0)

is the number of non-critical clients at the start of system operation. If a non-critical client fails, the

60

www.manaraa.com

system can continue to operate ~ in a degraded mode — as long as none of the servers or critical

clients fail. In this situation, the function that had been operational on the failed non-critical client can

be continued on another client of this type and Nn(t) is decreased by one.

4. Nc : The number of critical clients used in the system. If a critical client fails, the system

fails, if there are no non-critical clients available on which to run the critical client. A change in

software configuration may be necessary on the former non-critical client in order to run the critical

client. The former non-critical client becomes a critical client, Nn(t) is decreased by one, and the

system is run in a degraded mode. As long as the system remains operational, N
e
is constant.

5. N
s
: The number of servers used in the system. If a server fails, the system fails.

6. The probability that all Nn(t) have failed by time t, given that the software fails, is:

Pn(t)=(Pc)
ND(t)

, (1)

where pc is the probability that the software failure causes a client failure: pc
= probability (client

fails
|
software fails). Equation (1) assumes that client failures are independent. This is the case

because a failure in one client's software would not cause a failure in another client's software.

However it is possible that a failure in server software could cause a failure in client software, such

as a client accessing a server that has corrupted data. The extent that this could happen depends

significantly on whether the client software has been designed to protect against such occurrences.

Unless information can be obtained about such occurrences, this factor will be ignored. The

probability pc
can be estimated empirically as the ratio of: (client down time caused by software

failure)/(scheduled client operating time).

61

www.manaraa.com

7. The probability that one or more N
c
fail, given that the software fails, is:

Pc=l-(l-Pc)
Nc

, (2)

8. The probability that one or more N
s
fail, given that the software fails, is:

Ps=l-(l-Ps)
Ns

, (3)

where ps
is the probability that the software failure causes a server failure: ps

= probability (server

fails
|
software fails). Equation (3) assumes that server failures are independent. This is the case

because a failure in one server's software would not cause a failure in another server's software.

However it is possible that a failure in client software could cause a failure in server software, such

as a client with corrupted data accessing a server. The extent that this could happen depends

significantly on whether the server software has been designed to protect against such occurrences.

Unless information can be obtained about such occurrences, this factor will be ignored. The

probability ps
can be estimated empirically as the ratio of: (server down time caused by software

failure)/(scheduled server operating time).

9. Combining (1), (2), and (3), the probability of a system failure by time t, given that the

software fails, is:

Psys(t)=(Pn(t))(Pc)+Ps=[[(pc)
Nn(t)

][l-(l-pc)
N
1]+[l-(l-ps)

Ns
] (4)

The model concepts are illustrated in Figures 17, 18, and 19 where there are two servers, five

critical clients (CI ... C5), and five non-critical clients (C6 ... CIO). In Figure 17 one non-critical

client, C6, fails; therefore the system survives. In Figure 18 one ofthe servers, SI, fails; therefore

the system fails. Lastly, in Figure 19 one of the critical clients, C5, fails and all ofthe non-critical

clients, C6 ... CIO, fail; therefore the system fails.

62

www.manaraa.com

S = Server
C = Client

S2

CI C4 C5

C6 C7

A % L

C9

& (L

Figure 18. Failing Configuration # 1

63

www.manaraa.com

S = Server
C = Client

SI S2

Figure 19. Failing Configuration # 2

64

www.manaraa.com

S = Server
C = Client

C3 C4

Figure 17. Surviving Configuration

B. MODEL 2

In this situation there are only non-critical clientsNn(t) . However there is a minimum number

N^ ofthese clients that must remain operational for the system to survive. Therefore the number that

could fail Nf and cause a system failure is N^N^-CN^-l). Thus if there were Nn(t)=10 clients at

time t and Nnm=3 clients minimum to keep the system operational, a failure of eight or more clients

would reduce the number of clients to less than three.

1 . In general the probability of falling below tfm by time t is:

£, |N„(t)!/[(i!)(N„(t)-i)!]](Pc
,

)(l-Pc)
(Nn<,)-i)

(5)

65

www.manaraa.com

where i=Nn(t)-(Nnm-l), ...,Nn(t).

2. Combining (5) and (3), the probability ofa system failure by time t, given that the software

fails, is:

Ps.(t)=L [[Nn(t)!/[(i!)^^^ (6)

C. CONCLUSIONS

Based on the above approach, it appears feasible to develop a system software model for

distributed systems. The next step is to integrate equations (4) and (6) into the Schneidewind

Software Reliability Model. Then MCTSSA would need to collect system failure data in addition to

defect data in order to support model validation. For the purpose of validation it would be necessary

to know not only that a defect occurs but, in addition, whether the defect causes a system failure. In

addition, information is needed about typical values for pc
and ps ,

and an indication of which

applications can be represented by Model 1 and which can be represented by Model 2 .

66

www.manaraa.com

APPENDIX A. SOFTWARE DISCREPANCY REPORT

Date of Failure:

Report Originator:

Office Code:

Project/System Name:

Discrepancy Report Number:

Telephone Number:

Organization:

Program Designation:

Version:

Category:

S (software

)

H (hardware)

P (people)

Priority/Severity:

1 (Loss of Life, Mission Aborted)

2 (Degradation in performance)

3 (Operator Annoyance)

4 (Documentation Error)

5 (Error Classification Problem)

Test Procedure:

Simulation Used:

Linking with:

Configuration/Transients in Memory:

•

Failure Data: (check one)

CPU Time since Last Failure:

Clock Time since Last Failure:

Manhours expended since Last Failure:

Problem Duplicated: Yes or No
During Run:

Project Phase: (check one)

Software Requirements

Detailed Design

Software Integration & Testing

Operations / Maintenance

Preliminary Design

Code / Unit Testing

Systems Integration Test

Symptom Classification:

Operating System Crash:

Program Hang up:

Input Problem:

Correct input not accepted

Description incorrect or missing

Parameters incomplete or missing

Output Problem:

Wrong format

Incorrect result

Incomplete or missing output

Failed Required Performance:

Perceived Total Product Failure:

System Error Message:

Other (Explain):

67

www.manaraa.com

SOFTWARE DISCREPANCY REPORT

Dump Date:

Documents Affected:

Responsible Modules:

Reference Document:

Function Affected:

Project Activity:

Analysis

Inspection

Review

Compile

Audit

Test

Operation

Validation/Qual Test

Actual Cause of Problem

Product Software/ Database

Product Hardware

Test Software

Documentation

Interface

Operator Error

Enhancement (Perceived inadequacies)

Testing to Verify Fix:

Source ofProblem:

Time Required for Analysis:

Disposition:

Closed:

Corrective Action Taken

Non-Software Problem

Duplicate Problem in STR #

Fix not justified

Open:

Deferred to a Later Release

Other:

Merged with another Problem

QA Sign-Off: Date

68

www.manaraa.com

APPENDIX B. SAMPLE SMERFS PRINT-OUT

SSSSSSS M M EEEEEEE RRRRRRR FFFFFFF SSSSSSS

MMMMM E R R F S

SSSSSSS M M M EEEE RRRRRRR FFFF SSSSSSS

S SMME RRF S

SSSSSSS M M EEEEEEE RRF SSSSSSS

SOFTWARE REVISION NUMBER FfVE (21 SEPTEMBER 1993)

ENTER OUTPUT FILE NAME FOR THE HISTORY FILE; ZERO IF THE FILE IS

NOT DESIRED, OR ONE FOR DETAILS ON THE FILE.

THE HISTORY FILE IS A COPY OF THE ENTIRE INTERACTIVE SESSION. IT

CAN BE USED FOR LATER ANALYSIS AND/OR DOCUMENTATION.

a:\smerfsl

ENTER OUTPUT FILE NAME FOR THE PLOT FILE; ZERO IF THE FILE IS

NOT DESIRED, OR ONE FOR DETAILS ON THE FILE.

THE PLOT FILE CONTAINS SELECTED DATA AND LABELS TO ALLOW A USER-
SUPPLIED GRAPHICS PROGRAM TO GENERATE HIGH-QUALITY PLOTS. SINCE

A CHARACTER PLOTTER IS IMPLEMENTED WITHIN THE SMERFS PROGRAM (TO

ENSURE MACHINE PORTABILITY OF THE PACKAGE), THE USE OF THIS OP-

TION IS HIGHLY RECOMMENDED.

a:\pIot

ENTER DESIRED DATA TYPE, OR ZERO FOR A LIST.

THE AVAILABLE DATA TYPES ARE:
1 WALL CLOCK (WC) TIME-BETWEEN-FAILURES (TBF)

2 CENTRAL PROCESSING UNITS (CPU) TBF
3 WC TBF AND CPU TBF
4 INTERVAL FAULT COUNTS AND TESTING LENGTHS
ENTER DESIRED DATA TYPE.

4

ENTER ONE FOR A STANDARD SMERFS FILE INPUT; ELSE ZERO.

1

ENTER INPUT FILE NAME FOR INTERVAL DATA.

oi618.in

69

www.manaraa.com

THE INPUT OF 18 INTERVAL ELEMENTS WAS PERFORMED.

ENTER INPUT OPTION, OR ZERO FOR A LIST.

(Could enter 3 here. Shows the user a list of options.)

THE AVAILABLE INPUT OPTIONS ARE:
1ASCH FILE INPUT
2 KEYBOARD INPUT
3 LIST THE CURRENT DATA
4 RETURN TO THE MAIN PROGRAM
ENTER INPUT OPTION.

INTERVAL NO. OF FAULTS

1 .00000000E+00 .10000000E+O1

2 .00000000E-HX) .10000000E-K)1

3 .00000000E4O0 .10000000E+O1

4 .00000000E+00 .10000000E+01

5 .30000000E-K)1 .10000000E4O1

6 .lOOOOOOOE+Ol .10000000E+O1

7 .00000000E+00 .10000000E+01

8 .10000000E+01 .10000000E4O1

9 .00000O00E+O0 .10000000E+01

10 .10000000E4O1 .10000000E+O1

11 .10000000E-KH .10000000E+01

12 .00000000E+00 .10000000E-K)1

13 .20000000E4O1 .10000000E+01

14 .00000000E+00 .10000000E+01

15 .0O000000E+00 .10000000E+01

16 .00000000E+00 .10000000E+01

17 .00000000E4O0 .10000000E-K)1

18 .10000000E+01 .10000000E+O1

TESTINGLENGTH (These figures are listed in scientific notation.

For example, . 10000000E-K) 1 is the same as 1

)

ENTER INPUT OPTION, OR ZERO FOR A LIST.

THE AVAILABLE INPUT OPTIONS ARE:
1 ASCII FILE INPUT
2 KEYBOARD INPUT
3 LIST THE CURRENT DATA
4 RETURN TO THE MAINPROGRAM
ENTER INPUT OPTION.

70

www.manaraa.com

ENTER ONE FOR THE PROGRAM TO MAKE NEW DATA FILES; ELSE ZERO. THE
RESPONSE WILL BE USED THROUGHOUT THE EXECUTION. A ZERO WTLL ALSO
VOID THE DATA RESTORE OPTION IN DATA TRANSFORMATIONS.

ENTER MAIN MODULE OPTION, OR ZERO FOR A LIST.

THE AVAILABLE MAIN MODULE OPTIONS ARE:
1 DATA INPUT 6 PLOT(S) OF THE RAW DATA
2 DATA EDIT 7 MODEL APPLICABILITY ANALYSES
3 UNIT CONVERSIONS 8 EXECUTIONS OF THE MODELS
4 DATA TRANSFORMATIONS 9 STOP EXECUTION OF SMERFS
5 DATA STATISTICS

ENTER MAIN MODULE OPTION.
8

ENTER COUNT MODEL OPTION, OR ZERO FOR A LIST.

THE AVAILABLE FAULT COUNT MODELS ARE:
1 THE BROOKS AND MOTLEY MODEL
2 THE GENERALIZED POISSON MODEL
3 THE NON-HOMOGENEOUS POISSON MODEL
4 THE SCHNEIDEWIND MODEL
5 THE S-SHAPED RELIABILITY GROWTH MODEL
6 RETURN TO THE MAIN PROGRAM
ENTER MODEL OPTION.

4

ENTER ONE FOR SCHNEIDEWIND MODEL DESCRIPTION; ELSE ZERO.

ENTER ONE FOR DESCRIPTION OF TREATMENT TYPES; ELSE ZERO.

ENTER ONE TO INVESTIGATE FOR THE OPTIMUM S (USING TREATMENT TYPE
NUMBER 2); ELSE ZERO TO CONTINUE WITH THE MODEL EXECUTION.

ENTER RANGE OVER WHICH S SHOULD BE TESTED. NOTE, AN EXECUTION
ON A GIVEN S WHICH FAILED THE CONVERGENCE CRITERIA WILL NOT BE

71

www.manaraa.com

INCLUDED IN THE FOLLOWING RESULTS TABLE. THE OPTIMUM S FOR EI-

THER MSE-F OR MSE-T IS THE ONE RESULTING IN THE SMALLEST VALUE
FORYOUR CHOSEN CRITERIA.

1 9 (Enter as 1,9)

S BETA ALPHA WLS MSE-F MSE-T

1 .37154E-02 .57434E+O0 .71189E+00 .89573E+00 .15098E+01

2 .25076E-01 .72250E+O0 .84899E-K)0 .68418E+00 .12947E+01

3 .52370E-O1 .92300E-K)0 .10130E+01 .47735E+00 .10803E401

4 .88195E-01 .12021E+O1 .12214E+01 .34612E-K)0 .86076E+00

5 .13700E-KX) .16059E+01 .15409E+01 .47758E+00 .60788E+00 (Record these values for later

6 .51401E-01 .73825E+00 .58125E+00 .24450E+00 .11042E+O1 calculations. They are the minimum

7 .28025E-01 .58878E-K)0 .50090E+00 .30476E+00 .13863E-K)1 MSE values for their columns).

9 .60985E-01 .66786E+00 .61535E+00 .28068E-K)0 .13683E+01

ENTER ONE TO INVESTIGATE ANOTHER RANGE FOR S; ELSE ZERO.

1

ENTER RANGE OVER WHICH S SHOULD BE TESTED. NOTE, AN EXECUTION
ON A GIVEN S WHICH FAILED THE CONVERGENCE CRITERIA WILL NOT BE
INCLUDED IN THE FOLLOWING RESULTS TABLE. THE OPTIMUM S FOR EI-

THER MSE-F OR MSE-T IS THE ONE RESULTING IN THE SMALLEST VALUE
FORYOUR CHOSEN CRITERIA.

1 10 (This is an optional comparison).

S BETA ALPHA WLS MSE-F MSE-T

1 .37154E-02 .57434E+00 .71189E+00 .89573E+00 .15098E+O1

2 .25076E-01 .72250E+O0 .84899E+00 .68418E+00 .12947E+01

3 .52370E-01 .92300E-KX) .10130E+01 .47735E+O0 .10803E401

4 .88195E-01 .12021E+01 .12214E+01 .34612E+00 .86076E+00

5 .13700E+00 .16059E+01 .15409E+O1 .47758E+00 .60788E-K)0

6 .51401E-01 73825E4O0 .58125E+00 .24450E+00 .11042E+01

7 .28025E-01 .58878E-K)0 .50090E+00 .30476E+00 .13863E+01

9 .60985E-01 .66786E+O0 .61535E-KX) .28068E+00 .13683E+01

ENTER ONE TO INVESTIGATE ANOTHER RANGE FOR S; ELSE ZERO.

ENTER DESIRED MODEL TREATMENT NUMBER, OR FOUR TO TERMINATE MODEL
EXECUTION.

2

ENTER ASSOCIATED VALUE OF S (LESS THAN THE NUMBER OF PERIODS).

5 (This value corresponds to the minimum MSE-T).

72

www.manaraa.com

TREATMENT 2 MODEL ESTIMATES ARE:
BETA .13700E+00

ALPHA .16059E+01

TOTAL NUMBER OF FAULTS .11722E+02 (These are the key values for the calculation.)

PLUS THOSE SKIPPED .00000E+00 IN PERIODS 1 THROUGH 4

OF FAULTS REMAINING .17221E+01

WEIGHTED SUMS-OF-SQUARES
BETWEEN PREDICTED AND
OBSERVED FAULTS . 1 5409E-K) 1

MEAN SQUARE ERROR FOR
CUMULATIVE FAULTS .47758E+00

MEAN SQUARE ERROR FOR
TIME TO NEXT FAILURE .60788E+00

THE AVAILABLE FUTURE PREDICTIONS ARE:

1) THE NUMBER OF FAULTS EXPECTED IN THE NEXT TESTING PERIOD
2) THE NUMBER OF PERIODS NEEDED TO DISCOVER THE NEXT M FAULTS
ENTER PREDICTION OPTION, OR ZERO TO END PREDICTIONS.

2

ENTER VALUE OF M (BETWEEN ONE AND .17221E+01), OR ZERO TO END.

1.000000000000000

OF PERIODS EXPECTED .63443E+0 1 (This shows the predicted time to next failure).

ENTER VALUE OF M (BETWEEN ONE AND . 1 722 1E+01), OR ZERO TO END.

1.722000000000000

OF PERIODS EXPECTED .7 1759E+02 (This shows the predicted amount of time it would take

to reduce the number of remaining failures to .0001).

ENTER VALUE OF M (BETWEEN ONE AND . 1 722 1E+0 1), OR ZERO TO END.

0.000O00000000O00E+000

THE AVAILABLE FUTURE PREDICTIONS ARE:

1) THE NUMBER OF FAULTS EXPECTED IN THE NEXT TESTING PERIOD
2) THE NUMBER OF PERIODS NEEDED TO DISCOVER THE NEXT M FAULTS
ENTER PREDICTION OPTION, OR ZERO TO END PREDICTIONS.

ENTER DESIRED MODEL TREATMENT NUMBER, OR FOUR TO TERMINATE MODEL
EXECUTION.

73

www.manaraa.com

ENTER ASSOCIATED VALUE OF S (LESS THAN THE NUMBER OF PERIODS).

6 (This corresponds to the minimum MSE-F value).

TREATMENT 2 MODEL ESTIMATES ARE:
BETA .51401E-01

ALPHA .73825E-KX)

TOTAL NUMBER OF FAULTS .14363E+02 (These are the key values of interest).

PLUS THOSE SKIPPED 30000E+01 IN PERIODS 1 THROUGH 5

OF FAULTS REMAINING .43626E+01

WEIGHTED SUMS-OF-SQUARES
BETWEEN PREDICTED AND
OBSERVED FAULTS .58125E+O0

MEAN SQUARE ERROR FOR
CUMULATIVE FAULTS .24450E+00

MEAN SQUARE ERROR FOR
TIME TO NEXT FAILURE . 1 1042E+0

1

THE AVAILABLE FUTURE PREDICTIONS ARE:

1) THE NUMBER OF FAULTS EXPECTED IN THE NEXT TESTING PERIOD
2) THE NUMBER OF PERIODS NEEDED TO DISCOVER THE NEXT M FAULTS
ENTER PREDICTION OPTION, ORZERO TO END PREDICTIONS.

1

ENTER NUMBER OF PERIODS TO EXAMINE, OR ZERO TO END.

1.000000000000000 (Enter as 1)

OF FAULTS EXPECTED .36888E+00 (This predicts the remaining number of faults in one more

period).

ENTERNUMBER OF PERIODS TO EXAMINE, OR ZERO TO END.

O.0O00OOO00000000E+000 (Enter as 0)

THE AVAILABLE FUTURE PREDICTIONS ARE:

1) THE NUMBER OF FAULTS EXPECTED IN THE NEXT TESTING PERIOD
2) THE NUMBER OF PERIODS NEEDED TO DISCOVER THE NEXT M FAULTS
ENTER PREDICTION OPTION, OR ZERO TO END PREDICTIONS.

ENTER DESIRED MODEL TREATMENT NUMBER, OR FOUR TO TERMINATE MODEL
EXECUTION.

74

www.manaraa.com

ENTER ONE TO PERFORM AN ANALYSIS OF THE MODEL FIT USING THE PRE-

DICTIONS OF THIS MODEL; ELSE ZERO.

ENTER COUNT MODEL OPTION, OR ZERO FOR A LIST.

THE AVAILABLE FAULT COUNT MODELS ARE:
1 THE BROOKS AND MOTLEY MODEL
2 THE GENERALIZED POISSON MODEL
3 THE NON-HOMOGENEOUS POISSON MODEL
4 THE SCHNEIDEWIND MODEL
5 THE S-SHAPED RELIABILITY GROWTH MODEL
6 RETURN TO THE MAIN PROGRAM

ENTER MODEL OPTION.

ENTER MAIN MODULE OPTION, OR ZERO FOR A LIST.

THE AVAILABLE MAIN MODULE OPTIONS ARE:
1 DATA INPUT
2 DATA EDIT
3 UNIT CONVERSIONS
4 DATA TRANSFORMATIONS
5 DATA STATISTICS
ENTER MAIN MODULE OPTION.

9

THE SMERFS EXECUTION HAS ENDED.

6 PLOT(S) OF THE RAW DATA
7 MODEL APPLICABILITY ANALYSES
8 EXECUTIONS OF THE MODELS
9 STOP EXECUTION OF SMERFS

75

www.manaraa.com

APPENDIX C. LOGAIS CHRONOLOGICAL DEFECT COUNTS

Table 3. LOGAIS Chronological Defect Counts

Count

Interval (t)

Defect ID

Range
Number of

Defects

Summit Date Day

1 1-120 129 11/11/94 Fri

2 121-305 185 11/12/94 Sat

3 306 1 11/13/94 Sun

4 307-497 191 11/14/94 Mon

5 498-710 213 11/15/94 Tue

5 Day Total 710

Cumulative 710

6 711-888 178 11/16/94 Wed

7 889-942 54 11/17/94 Thu

8 943-981 39 11/18/94 Fri

9 982-996 15 11/19/94 Sat

10 997-1024 28 11/20/94 Sun

5 Day Total 314

Cumulative 1024

11 1025-1123 99 11/21/94 Mon

12 1124-1193 70 1 1/22/94 Tue

13 1194-1253 60 1 1/23/94 Wed

14 1254-1263 10 1 1/25/94 Fri

15 1264-1368 105 1 1/28/94 Mon

5 Day Total 344

Cumulative 1368

16 1369-1483 115 11/29/94 Tue

17 1484-1565 82 1 1/30/94 Wed

18 1566-1624 59 12/1/94 Thu

76

www.manaraa.com

19 1625-1697 73 12/2/94 Fri

20 1698-1703 6 12/3/94 Sat

5 Day Total 335

Cumulative 1703

21 1704-1721 18 12/4/94 Sun

22 1722-1740 19 12/5/94 Mon

23 1741-1772 32 12/6/94 Tue

24 1773-1803 31 12/7/94 Wed

25 1804-1823 20 12/8/94 Thu

5 Day Total 120

Cumulative 1823

26 1824-1830 7 12/9/94 Fri

27 1831-1840 10 12/15/94 Thu

28 1841-1861 21 12/19/94 Mon

29 1862-1915 54 12/20/94 Tue

30 1916-1929 14 12/21/94 Wed

5 Day Total 106

Cumulative 1929

31 1930-1935 6 12/22/94 Thu

32 1936-1960 25 12/23/94 Fri

33 1961-1964 4 12/28/94 Wed

34 1965-1982 18 12/29/94 Thu

35 1983-1985 3 12/30/94 Fri

5 Day Total 56

Cumulative 1985

36 1986 1 1/3/95 Tue

37 1987-2000 14 1/4/95 Wed

38 2001-2003 3 1/5/95 Thu

39 2004-2027 24 1/6/95 Fri

40 2028-2093 66 1/9/95 Mon

77

www.manaraa.com

5 Day Total 108

Cumulative 2093

41 2094-2157 64 1/10/95 Tue

42 2158-2231 74 1/11/95 Wed

43 2232-2292 61 1/12/95 Thu

44 2293-2358 66 1/13/95 Fri

45 2359-2362 4 1/14/95 Sat

5 Day Total 269

Cumulative 2362

46 2363-2372 10 1/16/95 Mon

47 2373-2390 18 1/17/95 Tue

48 2391-2399 9 1/18/95 Wed

49 2400-2405 6 1/19/95 Thu

50 2406-2424 19 1/20/95 Fri

5 Day Total 62

Cumulative 2424

51 2425-*** 48 1/24/95 Tue

52 2426-*** 44 1/25/95 Wed

53 2430-*** 145 1/26/95 Thu

54 2433-*** 227 1/27/95 Fri

55 2446-2473 28 1/30/95 Mon

5 Day Total 492

Cumulative 2916

56 2474-2480 7 1/31/95 Tue

57 2481-2486 6 2/1/95 Wed

58 2487-2510 24 2/2/95 Thu

59 2511-2529 19 2/3/95 Fri

60 2530-2543 14 2/6/95 Mon

5 Day Total 70

Cumulative 2986

78

www.manaraa.com

61 2544*** 53 2/7/95 Tue

62 3040-3067 28 2/8/95 Wed

63 3068-3099 32 2/9/95 Thu

64 3100-3110 11 2/10/95 Fri

65 3111-3137 27 2/13/95 Mon

5 Day Total 151

Cumulative 3137 .

66 3138-3146 9 2/14/95 Tue

67 3147-3167 21 2/15/95 Wed

68 3168-3213 46 2/16/95 Thu

69 3214-3233 20 2/17/95 Fri

70 3234-3242 9 2/21/95 Tue

5 Day Total 105

Cumulative 3242

71 3243-3260 18 2/22/95 Wed

72 3261-3314 54 2/23/95 Thu

73 3315-3320 6 2/24/95 Fri

74 3321-3324 4 2/27/95 Mon

75 3325-3334 10 2/28/95 Tue

5 Day Total 92

Cumulative 3334

76 3335-3340 6 3/1/95 Wed

77 3341 1 3/2/95 Thu

78 3342-3343 2 3/3/95 Fri

79 3344-3347 4 3/6/95 Mon

80 3348-3349 2 3/7/95 Tue

5 Day Total 15

Cumulative 3349

81 3350-3362 13 3/8/95 Wed

82 3363-3368 6 3/10/95 Fri

83 3369-3379 11 3/13/95 Mon

79

www.manaraa.com

84 3380-3383 4 3/14/95 Tue

85 3384-3419 36 3/15/95 Wed

5 Day Total 70

Cumulative 3419

86 3420-3431 12 3/16/95 Thu

87 3432-3447 16 3/17/95 Fri

88 3448-3492 45 3/20/95 Mon

89 3493-3530 38 3/21/95 Tue

90 3531-3566 36 3/22/95 Wed

5 Day Total 147

Cumulative 3566

91 3567-3601 35 3/23/95 Thu

92 3602-3616 15 3/24/95 Fri

93 3617-3635 19 3/27/95 Mod

94 3636-3652 17 3/28/95 Tue

95 3653-3658 6 3/29/95 Wed

5 Day Total 92

Cumulative 3658

96 3659-3681 23 3/30/95 Thu

97 3682-3693 12 3/31/95 Fri

98 3694-3710 17 4/3/95 Mon

99 3711-3726 16 4/4/95 Tue

100 3727-3731 5 4/5/95 Wed

5 Day Total 73

Cumulative 3731

101 3732-3769 38 4/6/95 Thu

102 3770-3840 71 4/7/95 Fri

103 3841 1 4/10/95 Mon

104 3842-3856 15 4/11/95 Tue

105 3857-3885 29 4/12/95 Wed

5 Day Total 154

80

www.manaraa.com

Cumulative 3885 -.

106 3906-*** 23 4/13/95 Thu

107 3909-3923 15 4/14/95 Fri

108 3924-3932 9 4/16/95 Sun

109 3933-3949 17 4/17/95 Mon

110 3950-3963 14 4/18/95 Tue

5 Day Total 78

Cumulative 3963

111 3964-4033 70 4/19/95 Wed

112 4034-4079 46 4/20/95 Thu

113 4080-4107 28 4/25/95 Tue

114 4108-4132 25 4/26/95 Wed

115 4133-4167 35 4/27/95 Thu

5 Day Total 204

Cumulative 4167

116 4168-4176 9 4/28/95 Fri

117 4177-4185 9 5/1/95 Mon

118 4186-4207 22 5/2/95 Tue

119 4208-4287 80 5/3/95 Wed

120 4288-4320 33 5/4/95 Thu

5 Day Total 153

Cumulative 4320

121 4321-4328 8 5/5/95 Fri

122 4329-4343 15 5/8/95 Mon

123 4344-4356 13 5/9/95 Tue

124 4357-4367 11 5/10/95 Wed

125 4368-4418 51 5/1 1/95 Thu

5 Day Total 98

Cumulative 4418

126 4419-4504 86 5/12/95 Fri

127 4505-4513 9 5/15/95 Mon

128 4514-4555 42 5/16/95 Tue

81

www.manaraa.com

129 4556-4584 29 5/17/95 Wed

TOTAL 4584

*** Indicates discontinuous sequences of IDs for Submit Date. First ID of first sequence shown.

Holding indicates breaks in defect submit dates.

82

www.manaraa.com

LIST OF REFERENCES

[AIA93] Recommended Practice for Software Reliability, R-013-1992, American National

Standards Institute/American Institute of Aeronautics and Astronautics, 370 LEnfant

Promenade, SW, Washington, DC 20024, 1993.

[BIL94] C. Billings, et al, "Journey to a Mature Software Process", IBM Systems Journal Vol.

33, No. 1,1994, pp. 46-61.

[FAR93] William H. Farr and Oliver D. Smith, Statistical Modeling and Estimation of Reliability

Functions for Software (SMERFS) Users Guide, NAVSWC TR-84-373, Revision 3,

Naval Surface Weapons Center, Revised September 1993.

[IEE93] ANSI/IEEE Standard for a Software Quality Metrics Methodology, IEEE 106 1 June,

1993.

[KEL95] Ted Keller, Norman F. Schneidewind, and Parti A. Thornton "Predictions for

Increasing Confidence in the Reliability of the Space Shuttle Flight Software",

Proceedings of the AIAA Computing in Aerospace 10, San Antonio, TX, March 28,

1995, pp. 1-8.

[MUS87] John Musa, et al, Software Reliability: Measurement, Prediction, Application, McGraw-
Hill, New York, 1987.

[SCH93] Norman F. Schneidewind, "Software Reliability Model with Optimal Selection of

Failure Data", IEEE Transactions on Software Engineering, Vol. 19, No. 11,

November 1993, pp. 1095-1104.

[SCH92a] Norman F. Schneidewind, "Methodology for Validating Software Metrics", IEEE
Transactions on Software Engineering, Vol. 18, No. 5, May 1992, pp. 410-422.

[SCH92] Norman F. Schneidewind and T.W. Keller, "Application of Reliability Models to the

Space Shuttle", IEEE Software, Vol. 9, No. 4, July 1992 pp. 28-33.

[SCH75] Norman F. Schneidewind, "Analysis of Error Processes in Computer Software",

Proceedings of the International Conference on Reliable Software, IEEE Computer

Society, 21-23 April 1975, pp. 337-346.

[WAR94] Kenneth M. Warburton, "Towards Better Quality and Reliability in the Software Reuse

Library Environment," Master's Thesis, Naval Postgraduate School, March 1994.

83

www.manaraa.com

APPENDIX B. MCTSSA SRE Training Plan

MCTSSA SOFTWARE RELIABILITY ENGINEERING
TRAINING PLAN

Final Version: January 10, 1996

Dr. Norman F. Schneidewind

LCDR Judie A. Heineman

Naval Postgraduate School

Code SM/Ss

Monterey, California 93943

Voice: (408)656-2719

Fax: (408) 656-3407

Internet: schneidewind@nps.navy.mil

127

www.manaraa.com

MCTSSA TRAINING PLAN
January 10, 1996

I. TOPIC ONE: Defining a Software Reliability Engineering Program

A. Project Background and Purpose

i. When an organization contracts for new software, it expects to receive a

"quality" product. But how does it know that what it is receiving will perform

as expected? What data was collected and what tests were run to show that

the software is "good?" How should the manager interpret the test results;

what reliability information do they show? What information should the

manager gather to make a decision on how reliable the software is? This

training plan is designed to provide the training necessary for Marine Corps

personnel to implement and manage the software reliability engineering

program which is described in the companion document: MCTSSA

SOFTWARE RELIABILITY HANDBOOK, January 10, 1996. Where

appropriate, sections in this training plan are cross referenced to the applicable

sections and pages in the handbook. Note: The handbook covers many types

of software reliability predictions. Only selected ones are covered in this

training plan to illustrate the prediction process.

ii. Quality is one of the user-oriented characteristics of software that is most

challenging to define quantitatively. To some, quality can be indirectly

measured by reliability. With this in mind, software reliability means that the

software will perform as expected for a specific period of time before it

malfunctions. Because reliability relates to the operation of software, it is

appropriately related to the term quality.

1

www.manaraa.com

iii. The Naval Postgraduate School in Monterey, CA was tasked with designing

a Software Reliability Engineering (SRE) Program for MCTSSA for use in its

Automated Information Systems. This SRE Program focuses on

implementing certain managerial procedures which allow for data collection

and analysis ~ the cornerstones of the program. These procedures are based

on an understanding of the definition of reliability, its significance in

determining the quality of a product, and its usefulness in making managerial

decisions. The program's ultimate objective is to PREDICT software

reliability using software failure data collected during the program's

development and design phases. This data is then input into the

Schneidewind Software Reliability Model which will provide the user with

information about the software's PREDICTED reliability. Specific uses for

this predicted reliability will be discussed further in the following

presentations.

B. Anticipated Challenges

i. When working with data, the user must anticipate the challenges he will face

in collecting the proper data and subsequently manipulating the data into a

format usable for his purposes. Frequently, raw data is unusable in its native

form, and must be "smoothed" into a format that can be readily applied to the

model. Some typical "smoothing" techniques include: averaging and moving

average. Detailed discussion ofthese techniques is beyond the scope of this

training session.

C. SRE Definition and Managerial Application

i. Software Reliability Engineering (SRE) is a new discipline that is maturing as

more organizations see the need to develop standard reliability practices. The

American Institute of Aeronautics and Astronautics (AIAA) Recommended

Practice on Software Reliability defines SRE as "the application of statistical

techniques to data collected during system development and operation to

www.manaraa.com

specify, predict, estimate, and assess the reliability of software-based

systems."

ii. Handling, identifying and correcting faults are significant concerns for the

manager because the entire software reliability process is expensive. "It also

impacts development schedules and system performance (through increased

use of computer resources such as memory, CPU time and peripherals

requirements)." (AIAA) This addresses the key issue regarding SRE — it

provides the manager with information about which he can make

informed decisions. There will always be a tradeoffbetween reliability, seen

as the failure rate, and cost. (Cost is directly related to testing time). The

manager will need to decide on a certain level of reliability for the product

resulting in a set cost. Higher reliability will result in higher cost. The

converse is also true. This is seen in Figure 1 (in the handbook, page 4).

D. Faults vs. Failures

i. As with any intellectual product, errors in design may occur. An error can be

defined as "a discrepancy between a computed, observed or measured

value or condition and the true, specified or theoretically correct value

or condition." (AIAA) In software, these errors may appear while

completing requirements formulation or, as is often the case, during design,

coding, and testing the product.

ii. The software development process should include measures to discover and

correct faults resulting from these errors. [In this context, faults are defined

as "defects in the code that can be the cause of one or more failures."]

(AIAA) These measures can address reviews, audits, screening by language-

dependent tools, and several layers oftesting. One way to reduce the number

and criticality oferrors is by modeling the effects ofthe remaining faults in the

delivered product. This can be achieved through a dedicated measurement

process by which each defect or fault is noted and formally recorded for

inclusion in the reliability model.

www.manaraa.com

Hi. As a point of clarification, a fault is technically different from a failure. A

failure can be defined as "the inability of a system or system component to

perform a required function within specified limits" or the "departure of

program operation from program requirements." (AIAA) In simpler terms, a

fault usually leads to afailure.

Components of an SRE Program

i. A model is chosen for implementation in the SRE program. It should have the

ability to make the types of predictions desired by the user, with a specified

accuracy. In MCTSSA's SRE Program, the Schneidewind Software

Reliability Model, one of the four models recommended by the "American

Standards Institute/American Institute of Aeronautics and Astronautics

Recommended Practice on Software Reliability", is used. This model can be

used to predict the following: Time to Next Failure, Cumulative Failures for

a Specified Time, Remaining Failures and Fraction of Remaining Failures,

Total Failures over the Life ofthe Software, Test Time to Achieve Specified

Remaining Failures, and Operational Quality.

ii. A successful software reliability program does not consist ofjust a model; it

also consists of the support structure and various definitions:

* reliability requirements;

* reliability measurements to meet those requirements;

* data collection procedures to obtain the necessary data;

* severity levels of failures;

* applications of reliability predictions;

* interpretation of model predictions; and

* user feedback for model improvements.

Although the conceptualization ofthe model does not occur in a sequence of

steps, its implementation does. The practitioner can best understand this

process from a description of the chronology of implementing and applying

the model. Therefore, this approach will be used in explaining the process. To

4

www.manaraa.com

illustrate the process, many equations, figures, and tables will be used. Many

real-world, actually out-qf this-world, examples from the Space Shuttle will

be used, because the process can be illustrated with real data, and real

predictions. However, it should not be concluded that the examples are not

applicable to MCTSSA, they are. The approach is generic and its feasibility

can be tested against MCTSSA systems. The Shuttle is a safety critical

system where human life and expensive equipment are at risk. This is also the

case with MCTSSA systems.

www.manaraa.com

II. TOPIC TWO: Implementing a Software Reliability Program

A. Without management's involvement in the SRE process, all efforts put forth to

produce a valid SRE program would be in vain. Management must provide resources

to establish a working, practical program. These resources include personnel, time,

and information resources such as computers and software to perform the

calculations. Once this is established, an SRE program can begin.

B. The SRE process normally consists of two phases: stating the organization's

reliability goals and testing.

i. The organization's reliability goals can be ideal or conceptual but must have

some basis in reality. A goal of"0%" defects might be the ideal, but this has

a slim likelihood of occurring in the real world. If it could occur, it will cost

an extraordinarily large sum ofmoney to obtain.

ii. The second phase ofthe SRE involves testing. It is here that the failure data

is collected and formatted for inclusion in the model of choice. It is the

data that allows the predictions for reliability to be made. The test plan

used must be consistent with the established goals. If a goal is to have the

predicted maximum number of remaining failures less than one, then the test

plan must be able to predict the remaining number of failures in the software.

The tests provide insight into the future ~ what may occur as a result of

using this software that has been tested. This insight is used to either forge

ahead with actual implementation of the software or return to the drawing

board and reassess the system. It will provide an indication as to whether or

not additional testing is needed because the results to date may be

inconclusive or show an undesirable trend. The test results also allow the

manager to prioritize his assets. It can help him to decide where he should

assign his resources. Is Module C predicted to be more reliable than Module

B? If this is true, he may decide to allocate the majority of his resources to

Module B to improve its reliability.

www.manaraa.com

The following steps should be considered by any organization as it begins to develop

a software reliability program. Each step is discussed in the handbook, pages 6-14.

The recommended steps in implementing an SRE include the following:

Establish a Measurement Framework

Collect the Data

Establish Problem Severity Levels

Estimate Model Parameters

Select the Optimal Set of Failure Data

Identify the Operational Profile

Make Reliability Predictions

Validate the Model

Make Reliability Decisions

Use Software Reliability Tools

D. SRE Implementation Phases

i. Step 1: State the Reliability Requirement. In this step, the software manager

should describe the conditions that must be fulfilled for the software to be

considered satisfactory (reliable). An example of such a requirement may be

"No software failure that would result in loss of life, loss of mission, or abort

of mission."

ii. Step 2: Establish a Measurement Framework. The organization should

consider a comprehensive measurement plan that would include indirect

measures of quality like problem report counts, size and complexity metrics.

Figure 2 (in the handbook, page 9) captures this idea. In this diagram, Level

1 shows the most direct measurement (e.g., a time betweenfailures), Level

2 shows an indirect measurement (e.g., discrepancy report count) one level

removed from the direct measurement; and Level 3 shows an indirect

measurement two levels removed from the direct measurement (e.g., size and

complexity). The advantage ofLevel 1 measurements is that they are the most

accurate representations of reliability; their disadvantage is that they cannot

be collected until the software is tested. Conversely, the indirect

measurements are less accurate as representations of reliability, but they can

be collected earlier in the development process.

www.manaraa.com

iii. Step 3: Collect the Data. Data could be collected in the format as shown in

Table l(in the handbook, page 10). For each system, there should be a brief

description of its purpose and functions. The Days # field could be noted in

hours or minutes, as appropriate. It is recommended that the Problem

Report ID field be coded to indicate Software (S) failure, Hardware (H)

failure, or People (P) failure. A more detailed tracking report can be

implemented as the organization becomes more advanced in its SRE process.

An example of such a report is found in the handbook in Appendix A.

iv. Step 4: Establish Problem Severity Levels. The levels assigned in this step

are purely discretionary and must be determined by the command. Some

practical, recommended severity level descriptions are as follows.

Level 1. Loss of life, loss of mission, abort mission

Level 2. Degradation in performance

Level 3. Operator annoyance

Level 4. System OK, but documentation in error

Level 5. Error in classifying a problem (i.e., no problem existed)

Note: Not all problems (faults) result in failures.

v. Step 5: Estimate Model Parameters. Once a model has been chosen to be

applicable to a particular system, the necessary model parameters must be

estimated, using SMERFS . Three parameters are used in the Schneidewind

Model and will be used for MCTSSA: a , which is the failure rate at the

beginning ofinterval "s," p , which is the failure rate per failure, and "s," the

first interval used in parameter estimation. These parameters will be discussed

later in the presentation and are only presented here as an introduction to the

terminology used in the methodology,

vi. Step 6: Select the Optimal Set ofFailure Data. This stage selects the subset

of failure data, starting with interval, "s" through "t," the last observed

interval. The objective here is to find the set of failure data that will give the

best parameter estimates and the most accurate predictions.

8

www.manaraa.com

vii. Step 7: Identify the Operational Profile. The operational profile describes the

system's environment. It includes the input variables (e.g. a listing of

available equipment or a ship's destination), the functional environment ofthe

program (i.e. a specific function the system is to perform such as sorting the

available equipment by minor property number), and the output variable (e.g.

a printout of the ship's destinations for the next two months). In this

framework, a failure can be seen as a departure of the output variable from

what it is expected to be.

viii. Step 8: Make Reliability Predictions. This step is the key to predicting the

reliability ofthe AIS. Each ofthe listed predictions is described in detail in the

Basic Concepts section (in the handbook, starting on page 17). The possible

predictions resulting from the model application are:

a. Time to Next Failure

b. Cumulative Failures for a Specified Time

c. Remaining Failures and Fraction ofRemaining Failures

d. Total Failures over the Life of the Software

e. Test Time to Achieve Specified Remaining Failures

f. Operational Quality

ix. Step 9: Validate the Model. This step evaluates the model to determine if

it measures what the model is designed to measure. The predicted values are

compared to the actual values. Once the two values are compared with each

other, a determination of the model's validity can be made. As an example,

if the model predicts the time to next failure will be two periods, the

predicted time would be compared to the actual time. This step is

accomplished after certain numbers and types of predictions have been

made. I£ however, the values do not compare favorably, the data used in the

model should be carefully examined to identify if anything unusual can be

found. If the data appears valid, and the model prediction does not match

reality, different models would need to be investigated. For the purposes of

this handbook, the Schneidewind Reliability Model will be used.

www.manaraa.com

x. Step 10: Make Reliability Decisions. The purpose of implementing a

reliability program is to provide the manager with additional information

through which he can make informed decisions. Reliability decisions such as

"Is the software safe enough to use such that it will not cause or result in loss

of life?" can be made as a result ofthe model's predictions. For this example,

the predicted remaining failures must be less than a specified critical value and

the predicted time to next failure must be at least as large at the mission

execution time plus some safety margin. This example will be addressed later

in the handbook using numerical examples.

xi. Step 11: Use Software Reliability Tools. There are software reliability tools

available to make the model calculations easier to achieve. The Statistical

Modeling and Estimation ofReliability Functionsfor Software, SMERFS,

is a software package available for this purpose. A sample SMERFS session

is outlined in the Testing Procedures section of the handbook, page 41. A

complete discussion of SMERFS will be presented towards the end of this

training session. Additionally, Statgraphics is a software tool available that

provides additional prediction equations of the Schneidewind Software

Reliability model that are not included in SMERFS. This tool will be further

discussed in the tutorial at the end ofthe training session.

SRE Implementation Summary

i. The organization's reliability goals can be ideal or conceptual but must have

some basis in reality. A goal of"0%" defects might be the ideal, but this has

a slim likelihood of occurring in the real world. If it could occur, it will cost

an extraordinarily large sum ofmoney to obtain.

ii. The second phase ofthe SRE involves testing. It is here that the failure data

is collected and formatted for inclusion in the model of choice. The test plan

used must be consistent with the goals established. If a goal is to have a

maximum number of remaining failures of less than one, then the test plan

must be able to predict the remaining number offailures in the software. The

10

www.manaraa.com

tests provide insight into the future - - what may occur as a result of using

this software that has been tested. This insight is used to either forge ahead

with actual implementation ofthe software or return to the drawing board and

reassess the system. It will provide an indication as to whether or not

additional testing is needed because the results to date may be inconclusive

or show an undesirable trend. The test results also allow the manager to

prioritize his assets. It can help him to decide where he should assign his

resources. Is Module C predicted to be more reliable than Module B? If this

is true, he may decide to allocate the majority of his resources to Module B

to improve its reliability.

11

www.manaraa.com

Ill TOPIC THREE: Using the Schneidewind Reliability Model

A. Failure Data Background: Data collection must be started at the development phases

ofthe process including any failure data obtained from the developer-run tests. Data

obtained from these early stages can then be used during the independent verification

and validation phases to predict the software's reliability. However, this data

collection would not stop at the development phase; data should be collected

throughout field operations. Data obtained at this stage can be used for future

software design projects and could lend itselfto further model validation.

As discussed in the earlier sections ofthis training session, a model is only able

to make predictions regarding the reliability ofthe software. These predictions can

be used as a management aid for allocating resources and identifying the need for

additional testing. They measure how reliable the software is compared to the

desired reliability stated by management in the design specifications.

Modeling allows the manager to "get a feel" for how well the software

performs based on actual data. This permits him to "look into the future" and predict

how well the software will perform a week from now, a month from now, a year from

now. . . The Schneidewind Model addresses the optimal selection of actual test data

to be used in making software reliability predictions. The following sections describe

the basic concepts used in this model and their implications for management.

Numerous examples from the space Shuttle will be used because ofthe abundance

of available test data . Where applicable, MCTSSA examples will additionally be

discussed.

B. This section gives the manager additional information on the mathematical

foundations ofsoftware reliability engineering. Application of the concepts discussed

in the following lessons can be found in the Testing Methodologies Section starting

on page 39 of the handbook. The following scenario is presented to give the reader

an understanding ofthe model application and the uses for the application results:

Time to Next Failure

Remaining Failures and Fraction Remaining Failures

Test Time to Achieve Specified Remaining Failures

12

www.manaraa.com

Cumulative Failures for a Specified Time

Total Failures over the Life of the Software

C. Concepts Used in the Schneidewind Reliability Model

i. Time to Next Failure

a. Rationale: This concept is important for the manager in that it permits

him to make an informed, educated decision on the reliability of the

software. As a simplistic example, ifthe predicted time to next failure

is three days, but the software is scheduled to be run for ten days, the

manager can anticipate that a failure will occur before the mission is

complete. He must then decide whether or not he wants to take that

risk.

b. Concept Discussion: The time to next failure can be described as the

amount oftime that will elapse from the present time, t, until the next

recorded failure occurs. In other words, it is the predicted amount of

time it will take for the next failure to occur. Execution time is

measured from the beginning of a test. This execution time is

recorded in convenient intervals of time.

c. Application: As an example, a convenient interval of time for the

Shuttle program is 30 days. This will be seen on the graphs

displaying calculations of time to next failure. However, an

organization can set its own interval. In some MCTSSA examples, an

appropriate interval would be one week (five workdays).

Figure 3 (in the handbook, page 20) is a tool that can be used

as a management aid. It shows the predicted and actual times to next

failure for current execution times. The graph can be read in the

following way. If we take a given failure, Failure 1, for example, it

occurs at t = 4 (read from the x-axis); therefore, at t = 1, the time to

next failure will be equal to 3 (read from the y-axis), (4-1=3). At

t = 2, the time to next failure will be equal to 2, (4 - 2 = 2). At t = 4,

13

www.manaraa.com

Failure 1 occurs, so the time to next failure is 4, (8 - 4 = 4). In this

figure, we predict the time to next failure to be 4 at execution time 1

8

on the dashed curve. This curve is derived from additional

information and testing (using the Schneidewind Model),

ii. Remaining Failures and Fraction ofRemaining Failures

a. Rationale: The number of remaining failures provides the manager

with valuable information about the reliability of his software.

Specifically, it gives him an indication of the software's reliability by

predicting the remaining failures (undiscovered failures) that still exist

in the software. With this information, he can make an informed

decision as to whether the software meets his requirements. If the

number of remaining failures is high, the software will typically not

satisfy the reliability requirements.

b. Concept Discussion: The number of remaining failures, R, is

measured from a given interval and identifies the predicted count of

failures remaining in the software. Ifone predicts the total number

of failures that will occur in the software, the remaining failures can

be predicted though simple subtraction: total number of failures minus

the number of failures found to date.

c. Application: Management will set guidelines on the desired value for

R. Normally, R is set to be less than one (< 1). This means that the

expectednumber ofremaining failures that will occur from the present

time to the end ofthe software execution cycle will be less than one.

If the predicted value for R is greater than one, the software can be

expected to fail during the mission. If the system is a mission critical

or has the potential to cause harm to human life, the prediction ofR

>1 should tell the manager that there would be serious risk ifhe uses

the software as it is currently designed. In figure 4, (in handbook,

page 27), one can see how/? (fraction of remaining failures) might

14

www.manaraa.com

behave as increased test time is applied (represented by "test

intervals"). From this type of information a program manager can

determine whether more testing is warranted, or whether the software

is sufficiently tested to allow its release or unrestricted use. Note that

required test time rises very rapidly at small values of p and R(t).

iii. Test Time to Achieve Specified Remaining Failures

a. Rationale: For planning purposes, the manager can predict the

total test time that would be required to achieve a given

reliability level, as measured by number of remaining failures.

The predicted total test time required to achieve a specified

number of remaining failures, where R(t2) is the specified

number of remaining failures at t2, is:

VtloMa/CPfR^)])]]/?^!)

b. Concept Discussion: An important trade-off is between

reliability and the test time to achieve that reliability. As

testing continues, the amount of test time required to achieve

marginal increases in reliability become significant.

c. Application: Again we consult figure 4, page 27 in the

handbook but this time focus on how rapidly test time

increases with decreases in fraction remaining failures.

4. Cumulative Failures for a Specified Time

a. Rationale: It is useful to predict the cumulative failure count

at future intervals — before the defects are found ~ so that the

software manager can anticipate the reliability of the software

and take early action to improve it, ifnecessary. Furthermore,

management needs this information to plan tests and to assign

personnel to testing and defect correction.

15

www.manaraa.com

b. Concept Discussion: This gives the manager information

about the reliability ofthe software from the start of testing or

operation up to that time interval. It gives him information

about the effectiveness of his quality assurance program and

whether there is the need for additional testing. This

information can prompt the manager to continue testing or to

deploy the software, provided that the predicted time to next

failure and number of remaining failures are acceptable.

c. Application: Cumulative failures are the total failures

predicted to occur at a specific point of time in the future.

The benefit of this prediction is that it can be used to

anticipate the total failures, for a given execution time, and

help the manager prepare to deal with them. Also, if the

predicted number of failures is considered unacceptable, the

software and its processes can be investigated to see where

the problems lie.

5. Total Failures over the Life ofthe Software

a. Rationale: This quantity is the summation the failures predicted over

the expected lifetime of the product. It can be used by management

as an approximation of the "reliability" of the software under

investigation and can be used as a measure of the product's reliability.

Intuitively, a predicted large number of failures indicates poor

reliability, with the converse also being true.

b. Concept Discussion: This quantity represents the total failures and

faults in the software system. Therefore it is very useful for indicating

the total testing problem that it confronts management in faces in

order to achieve its reliability objectives.

c. Application: The main application is in the computation of remaining

failures by subtracting the observed failures to date from the predicted

16

www.manaraa.com

total failures. For example, this approach was used in Figure 7, page

33 of the handbook in computing the "6" remaining failures, which

corresponds to a total test time of 52 intervals.

17

www.manaraa.com

IV. TOPIC FOUR: Software Reliability Prediction Tutorials

1. SMERFS and The Schneidewind Software Reliability Model: SMERFS is a

software reliability modeling tool that can be used to gain insight into the reliability

ofthe software being tested. SMERFS is a tool that implements the models developed

by Schneidewind and a number of other software reliability researchers. Using the

Schneidewind Model component ofSMERFS, two types of predictions can be made:

for a given number of time intervals, how many failures will occur? secondly, for a

given number offailures, how many time intervals will be required for the failures to

occur? After inputing the software failure count data, usually from an input failure

data file, the first step is to determine the optimal starting value for "s" as determined

by the table of mean square error (MSE) values; usually the "s" with the minimum

MSE will be selected.

2 SMERFS Operations:

a. Although most of the directions for SMERFS show up on the computer

screen and are self-explanatory, the following amplifying instructions will

assist the first time user of SMERFS in successfully completing his session.

See Appendix A to follow along with the SMERFS printout. User inputs are

highlighted (in bold print) for ease of use. Note. Calculation results should

be rounded to no more than one or two decimal places, because reliability

cannot be predicted with greater precision. However, to be consistent with

the SMERFS printouts in Appendix A, the results shown in this section will

be left as calculated.

b. Once SMERFS is accessed, the first input required from the user will be the

name ofthe file where he would like the SMERFS output (results) stored. As

an example, a:\smerfsl would store the resulting SMERFS ASCII file on the

computer's A-drive if a disk is inserted. This will make data retrieval easier

once the session is complete. The user can then access his "output" file via a

word processing program, format the data as he wishes, and print the results.

18

www.manaraa.com

c. The user will then be asked ifhe would like to store a plot file for later

retrieval. The recommended answer for this question is 0, (zero),

meaning "no".

d. SMERFS will next require the data type the user will be working with. At

this point the user will enter 4, for the interval failure counts and testing

lengths.

e. Now he will be asked to enter a one for the standard SMERFS file input.

This should be followed by the name of the file where his sample data is

stored, for example, a file name of oi618.in. [This sample file contains the

number of failures recorded against an operational increment (01) of the

Shuttle. The OI consists ofa build ofvarious modules in the Shuttle software

library. There are 18 count intervals in oi618.in. Each interval is 30 days of

continuous execution time.]

f. This step will ask the user how he would like the input displayed. The

recommended response is to enter a 3. This entry will show a table of all the

data input through the oi618.in file. However, the user may enter a to

display a list of his options at this point.

g. Following the display of data, the same question will reappear regarding the

input display. This time the recommended response is to enter 4 to take him

to the SMERFS main menu. He will then be asked if he would like to make

some new data files. He should enter a to void the data restore option.

h. He should then enter to display the listings available at the main menu.

This will present him with nine choices. He should select option 8

(Executions of the models).

i. Upon this selection, the user will then enter a to display the available count

model options. He should select option 4 (The Schneidewind Model).

j. The next displays will permit the user to see descriptions of the model or the

treatment type. For these options, a should be entered unless he desires the

descriptions.

19

www.manaraa.com

k. The next step will be to investigate the "optimum s" from the various count

intervals input into the program. A 1 should be entered here. He will then be

asked to enter the range over which "s" should be tested. In general, the user

should enter the range ofthe input failure data (i.e., 1,18 for this application).

However for this application, we had previously determined that SMERFS

could not compute values for MSE for "s" greater than 9. Therefore for this

specific example, the user should enter 1,9. This entry will display the table

of s, beta, alpha, WLS, MSEp and MSE T . The last two terms are the mean

square error, as a function of "s", for number of failures and time to failure

predictions, respectively (ignore the "WLS" column).

1. The user should note the table results and select those values for "s" which

give him the smallest MSEp and MSE T .

m. After the user is comfortable with the data presented in the table, he should

enter to conclude the table presentation. He will then be asked to enter the

desired model treatment number. He should enter 2. For the number of

associated values of "s" he should enter the corresponding "s" value that gives

the smallest MSE T, for time to failure prediction. In this sample file, the

minimum value for MSE T is seen for "s" equal to 5. A 5 should be entered.

This entry will result in a display of model estimates. Of note in this display

should be the total number offailures, and the remaining number offailures.

(Total number of failures: .11722E+02; Remaining number of failures:

. 17221E+01). These values, as discussed previously, provide the manager

with information regarding the reliability of the software he is testing. He

should record these values for future use in this example.

TIME TO NEXT FAILURE PREDICTIONS

a. The user will then be prompted to select from two options regarding future

predictions. For the sample run, he should select 2 for the prediction ofthe

20

www.manaraa.com

number of periods needed to discover the next "M" failures. This will allow

him to determine the value of "M". He should enter a 1. The result will

predict the number ofadditional test periods required to discover one more

failure. The result is 6.34 periods (190 days). This implies that the time to

next failure, from the present time, will be 190 days,

b. The user will be prompted to enter a to end the current predictions.

4 NUMBER OF FAILURES PREDICTIONS

a. This step moves the user into predicting the number of failures that will occur

in one more test period. He will be prompted to enter the model treatment

number. He should enter a 2.

b. He will then be prompted to enter the associated value of "s" he would like to

investigate. He should enter the "s" value corresponding to the minimum

value for MSE F he recorded earlier. For this exercise, the value of 6 should

be entered. This entry will produce a listing similar to the listing produced in

step 2k. As in step 2k, the key values obtained here are the total number of

failures, the number corresponding to plus those skipped, and the number of

failures remaining. If the value for plus those skipped is not equal to zero,

this value must be added to the total number of failures and the number of

failures remaining. The user should record these values. The example

values correspond to:

Total number of failures: 14.363

Plus those skipped: 3

of failures remaining: 4 . 3626

c. The program will present the user with two options for data evaluation. He

should choose option 1 for the number offailures expected in the next testing

period. He will be prompted to enter the number of periods to examine. He

should enter a 1. This will display the number of failures expected. For this

example, it will be .369. This implies that the number of remaining failures

21

www.manaraa.com

occurring in the next operational increment (30 days) will be .36888. This is

the final SMERFS calculation.

d. The user can exit the program by entering the following values in sequence:

to end predictions, followed by a 4 to terminate the model execution, to

conclude analysis of model fit, for count model options, 6 to return to the

main menu, for a list of main module options, and finally, 9 to stop

execution of SMERFS.

5 INTERPRETING SMERFS RESULTS

Using the sample file and the SMERFS software, the following results were

achieved:

a. Time to Failure Data ("s" = 5):

Time to next failure (from present time): 6.34 periods (190 days)

Number of remaining failures (from present time): 1 .72

Total number of failures: 11.7

Calculatedfraction ofremainingfailures: .147

b Number of Failures Data ("s" = 6):

Number of remaining failures (from present time): 7.36

Total number of failures: 17.36

Calculatedfraction ofremainingfailures: .42

Predicted number offailures that will occur in one more period: .369

Note: Because in this example s=5 was optimal for time tofailure predictions and s=6 was

optimal for number offailures predictions, different results are obtained for number of
remaining failures and total number offailures. Because MSEp applies to failure count

quantities like these, the values obtained for s=6 should be used in this example (i.e., number

ofremainingfailures=7.36 and total number offailures= 17.36).

These results provide the manager with useful information regarding the reliability of

his software, provided he looks at all the data as complementary information. He

should not make a decision based on only one piece ofthe above information, rather,

he needs to look at the data in its entirety.

22

www.manaraa.com

6 STATGRAPHICS OPERATIONS USING SHUTTLE DATA

a. Statgraphics is a statistical analysis program that is used to augment the

reliability predictions obtained from SMERFS. Equations, like the one for t2

below, can be created using the Statgraphics equation editor feature. Of

particular interest in this phase ofthe predictions is the formula for computing

the test time required to achieve a given reliability level. The amount of test

time is defined by the following equation:

t
2
=[log[a/(V[R(t

2
)])]]/p+(s-l)

b. Based on the way this equation is implemented in Statgraphics, the user must

first calculate p, the fraction of remaining failures, for each of the desired

number ofremaining failures, R^. For this example, R(t2) will be one, two,

three, and four.

c. Once Statgraphics has been accessed, the user will be presented with a menu

showing various options for calculations and presentations. He will depress

the F8 function key which will cause a new screen to be superimposed on the

menu. Here, he will type "exec" for the execution screens to appear.

d. Once the blank screens appear, he should type t2 at the colon prompt if the

user wants to see the equation before he uses it in a calculation. Otherwise,

he can skip this step. This will display the above ^ equation which has already

been preloaded for the user. For Statgraphics to calculate the numerical value

for this equation, the user must input the values for alpha, beta, Xs, s and p.

The alpha, beta, and s values correspond to the values obtained from the

SMERFS session for the smallest MSEp value. The Xs value is the number

of failures observed prior to s=6 from the same SMERFS session ("plus

those skipped" in SMERFS), the p value is the desired number for the

fraction of remaining failures for remaining failures of one, two, three, and

four.

23

www.manaraa.com

(1) The user will now enter the above mentioned values in the

following format for one remaining failure:

alpha GETS .73825

beta GETS .051401

Xs GETS 3

s GETS 6

pGETS(l/(EVALFt))
EVALt2

P

These commands will display the value for the test time required to

achieve a reliability level. For this input, the predicted test time

required to achieve the reliability level ofhaving one remaining failure

is 56.8 thirty day intervals. This will correspond to a fraction of

remaining failures equal to .058. For the remaining failures equal to

two, three, and four the following commands must be entered:

(2) pGETS(2/(EVALFt))
EVALt2 Results: t2 is 43.35

p pis. 115

(3) p GETS (3/(EVAL Ft))

EVALt2 Results: t2 is 35.47

p pis. 173

(4) pGETS(4/(EVALFt))
EVALt2 Results: t2 is 29.87

p p is .230

The above results could be plotted to compare the effect that changing the remaining

failures has on the amount of test time needed to achieve that end. An asymptotic

relationship is seen between t2 and the fraction of remaining failures, "p." Figure 10

(in handbook, page 49) is a sample graph that could be obtained.

24

www.manaraa.com

Application: With this information, the manager could gain insight into the predicted

amount oftime it would take to achieve given reliability levels.

25

www.manaraa.com

V TOPIC FIVE: Applications of Prediction Results

1 Interpreting SMERFS Results

Using the sample file and the SMERFS software, the following results were obtained:

a Time to Failure Data ("s" = 5):

Time to next failure (from present time): 6.34 periods (190 days)

Number of remaining failures (from present time): 1 .72

Total number of failures: 11.7

Calculated
i
/rac/7o« ofremainingfailures: .147

b Number of Failures Data (V = 6):

Number ofremaining failures (from present time): 7.36

Total number of failures: 17.36

Calculatedfraction ofremainingfailures. .42

Predicted number of failures that will occur in one more period: .369

These results provide the manager with useful information regarding the reliability of

his software, provided he looks at all the data as complementary information. He

should not make a decision based on only one piece ofthe above information, rather,

he needs to look at the data in its entirety.

c. . Application ofResults: A manager must decide whether or not to launch the

space Shuttle for a mission to last ten days. He has collected failure data on

the software to be used in the launch and has input the data into the model as

described in the above sections. Based on his confidence in the model and the

predictions made by the model he will make his decision to launch or not.

With the above statistical predictions at hand, the manager could make a

decision on whether or not to launch the Shuttle for a mission lasting ten days.

Looking at the data in its entirety, he should not launch the Shuttle. Even

26

www.manaraa.com

though the time to next failure is predicted at 190 days and only .37 failures

are predicted for the next interval (30 days giving the mission a cushion of 20

days), the predicted number of remaining failures is 7.36. This is a

significantly high number. (As discussed previously, the manager desires this

number to be less than one.) The time to make the software virtually error

free is 72 periods, a long period of time. The decision must be based on the

available model evidence, his confidence in the model, his risk aversion, and

any other factors at his disposal. Using only the data from this experiment,

the overriding factor of 7.36 possibly life-threatening failures, the manager

should not launch the Shuttle.

2. Interpreting Statgraphics Results

a. Application: With this information, the manager could gain insight into the

predicted amount of time it would take to achieve a given reliability level.

Using the scenario mentioned previously, as an example, one could see that

it is predicted to take almost 57 periods (totaling 4.7 years) from t=0 to

reduce the fraction ofremaining failures to .058. The test time curve, Figure

10, page 49 in the handbook, indicates that there will be a point where there

are only marginal returns achieved by additional testing.

Looking at the shape of the curve, the software manager must

understand that as predicted reliability increases (the number of predicted

failures decreases) there will be a significant increase in the amount of testing

time needed to achieve those results. There will come a point were the

27

www.manaraa.com

additional cost oftesting will result in only minimal gains in reduced software

failures. The manager must make the decision to stop testing and deploy the

current software, based on available funding for testing and the desired

reliability levels.

Management must use all resources available to it to come to a sound,

information-supported decision. The predictions provided by the

Schneidewind Software Reliability Model can give management additional

information on the predicted reliability of its software. This can be

accomplished by both the developer and the implementor using the software

reliability engineering process that has been described in the handbook. Using

appropriate data, the predictions can be used to help make an informed

reliability decision. However, the final decision must be made by the manager

based on all the information he has available to him.

28

www.manaraa.com

APPENDIX A: Sample Training Session (Held at MCTSSA, 14 December 1995)

ASTERISKS INDICATE COMMENTS TO DISTINGUISH THEM FROM SMERFS OUTPUT

READ IN DATA THAT WAS PREVIOUSLY GENERATED BY SMERFS FROM ASCH FILE INPUT

TESTING INTERVAL WDLL ALWAYS BE "1" IN SMERFS. IN THE APPLICATION IT WILL BE THE
ACTUAL LENGTH OF EACH INTERVAL (E.G., 1 HOUR, 1 DAY, 30 DAYS)*

ENTER DESIRED DATA TYPE, ORZERO FORA LIST.

4 *REFERS TO FAILURE COUNT DATA*

ENTER ONE FOR A STANDARD SMERFS FILE INPUT; ELSE ZERO.

1

ENTER INPUT FILE NAME FOR INTERVAL DATA.
oi618.in *(Shuttle Failure Data)*

THE INPUT OF 18 INTERVAL ELEMENTS WAS PERFORMED.

ENTER INPUT OPTION, OR ZERO FOR A LIST.

THE AVAILABLE INPUT OPTIONS ARE:
1ASCH FILE INPUT
2 KEYBOARD INPUT
3 LIST THE CURRENT DATA
4 RETURN TO THE MAIN PROGRAM
ENTER INPUT OPTION.

3

INTERVAL NO. OF FAULTS TESTING LENGTH

1 OOOOOOOOE+00 .10000000E+01

2 .O00O00OOE+0O 10000000E+01

3 .00000000E+00 .10000000E+01

4 .00000000E+00 lOOOOOOOE+01

5 .30000000E+01 .10000000E+01

6 lOOOOOOOE+01 .10000000E+01

7 .00000000E+00 .10000000E+01

8 lOOOOOOOE+01 .10000000E+01

9 .0O00OOO0E+OO .10000000E+01

10 .10000000E+01 .10000000E+01

11 .10000000E+01 .10000000E+01

12 .OOOOOOOOE+00 .lOOOOOOOE+01

13 .20000000E+01 .10000000E+01

14 .OOOOOOOOE+00 .10000000E+01

15 .000000O0E+O0 .lOOOOOOOE+01

16 .00000000E+00 .10000000E+01

17 .OOOOOOOOE+00 .10000000E+01

18 .10000000E+01 .10000000E+01

29

www.manaraa.com

*JTND THE BEST STARTING INTERVAL FOR USING THE FAILURE DATA. SINCE THERE IS A TOTAL
OF 18 INTERVALS OF DATA, USE THE RANGE 1,18. SMERFS WILL ONLY PRODUCE A RESULT FOR
"S" WHERE IT CAN OBTAIN CONVERGENCE. FOR FAILURE COUNT PREDICTIONS, USE THE
MINIMUM MSE-F "S"; FOR TIME TO FAILURE PREDICTIONS, USE THE MINIMUM MSE-T "S".*

ENTER ONE TO INVESTIGATE FOR THE OPTIMUM S (USING TREATMENT TYPE
NUMBER 2); ELSE ZERO TO CONTINUE WITH THE MODEL EXECUTION.

1

ENTER RANGE OVER WHICH S SHOULD BE TESTED. NOTE, AN EXECUTION
ON A GIVEN S WHICH FAILED THE CONVERGENCE CRITERIA WILL NOT BE
INCLUDED IN THE FOLLOWING RESULTS TABLE. THE OPTIMUM S FOR EI-

THER MSE-F OR MSE-T IS THE ONE RESULTING IN THE SMALLEST VALUE
FOR YOUR CHOSEN CRITERIA.

1 18

S BETA ALPHA WLS MSE-F MSE-T

1 .37154E-02 .57434E+00 .71189E+00 .89573E+00 .15098E+01

2 .25076E-01 .72250E+00 .84899E-K)0 .68418E+00 .12947E401

3 .52370E-01 .92300E+00 .10130E+01 .47735E+00 .10803E+O1

4 .88195E-01 .12021E+01 .12214E+01 .34612E+00 .86076E+00

5 .13700E+00 .16059E+01 .15409E+01 .47758E+00 .60788E+00

6 .51401E-01 .73825E+00 .58125E+00 .24450E+00 .11042E+01

7 .28025E-01 .58878E+00 .50090E+O0 .30476E+00 .13863E+01

9 .60985E-01 .66786E+00 .61535E+00 .28068E+00 .13683E+01

ENTER DESIRED MODEL TREATMENT NUMBER, OR FOUR TO TERMINATE MODEL EXECUTION.
2 *METHOD WHEREBY INTERVALS I,.-, S-l ARE DISCARDED*

ENTER ASSOCIATED VALUE OF S (LESS THAN THE NUMBER OF PERIODS).

6 CORRESPONDS TO MINIMUM MSE-F ABOVE BECAUSE WE WILL BE MAKING A
FAILURE COUNT PREDICTION.*

TREATMENT 2 MODEL ESTIMATES ARE:
BETA .51401E-01

ALPHA .73825E+00

TOTAL NUMBER OF FAULTS .14363E+02

PLUS THOSE SKIPPED 30000E+01 IN PERIODS 1 THROUGH 5 *(INTERVALS lr..,S-l)*

OF FAULTS REMAINING .43626E+01

WEIGHTED SUMS-OF-SQUARES
BETWEEN PREDICTED AND
OBSERVED FAULTS .58125E+00

MEAN SQUARE ERROR FOR
CUMULATIVE FAULTS .24450E+00

MEAN SQUARE ERROR FOR
TIME TO NEXT FAILURE . 1 1042E+0

1

* CORRECT PREDICTED TOTAL NUMBER OF FAILURES = 14.36+3.0 (NUMBER SKD?PED)=17.36*

* ACTUAL TOTAL NUMBER OF FATLURES=14 (FAILURES OBSERVED AFTER 65.03 INTERVALS)*

* CORRECT PREDICTED NUMBER OF REMAINING FAILURES=4.26+3.0 (NUMBER SKD7PED)=7.36*

30

www.manaraa.com

*ACTUAL NUMBER OF REMAINING FAELURES=4 (FAILURES OBSERVED BETWEEN 18 AND 65.03

INTERVALS)*

THE AVAILABLE FUTURE PREDICTIONS ARE:

1) THE NUMBER OF FAULTS EXPECTED IN THE NEXT TESTING PERIOD

2) THE NUMBER OF PERIODS NEEDED TO DISCOVER THE NEXT M FAULTS
ENTER PREDICTION OPTION, OR ZERO TO END PREDICTIONS.

1

ENTERNUMBER OF PERIODS TO EXAMINE, OR ZERO TO END.

1.000000000000000 *WANT PREDICTION FOR INTERVAL T=19*

OF FAULTS EXPECTED 36888E+00

ACTUAL NUMBER OF FAILURES IN NEXT INTERVAL (T=19)=0*

MODEL IS ENTERED AGAIN SO THAT THE BEST VALUE OF "S" FOR TIME TO FAILURE
PREDICTION CAN BE USED*

ENTER DESIRED MODEL TREATMENT NUMBER, OR FOUR TO TERMINATE MODEL EXECUTION.

2

ENTER ASSOCIATED VALUE OF S (LESS THAN THE NUMBER OF PERIODS).

5 CORRESPONDS TO MINIMUM MSE-T ABOVE BECAUSE WE WELL BE MAKING A
TIME TO FAILURE PREDICTION.*

*THE USUAL LISTING IS NOT SHOWN BECAUSE THE TOTAL FAILURES AND REMAINING FAILURES
WERE OBTAINED AS PART OF THE FAILURE COUNT PREDICTION*

THE AVAILABLE FUTURE PREDICTIONS ARE:

1) THE NUMBER OF FAULTS EXPECTED IN THE NEXT TESTING PERIOD

2) THE NUMBER OF PERIODS NEEDED TO DISCOVER THE NEXT M FAULTS
ENTER PREDICTION OPTION, OR ZERO TO END PREDICTIONS.

2

ENTER VALUE OF M (BETWEEN ONE AND .17221E+01), OR ZERO TO END. *(THIS IS THE RANGE OF
PREDICTED REMAINING FAILURES)*

1 .000000000000000 *WANT PREDICTION FOR ONE MORE FAILURE*

OF PERIODS EXPECTED .63443E+01 *(LE., T=18+6.34=24.34)*

ACTUAL TIME TO NEXT FAILURE=6.2 (I.E., T=18+6.2=24.2)*

31

www.manaraa.com

ENTER INPUT FILE NAME FOR INTERVAL DATA

logais30.in *LOGAIS FILE FOR 30 INTERVALS (SUBMIT DAY)*

SEE TABLE 3, PAGES 78-84 IN THE HANDBOOK*

THE INPUT OF 30 INTERVAL ELEMENTS WAS PERFORMED.

ENTER INPUT OPTION, OR ZERO FOR A LIST.

THE AVAILABLE INPUT OPTIONS ARE:

1 ASCII FILE INPUT
2 KEYBOARD INPUT
3 LIST THE CURRENT DATA
4 RETURN TO THE MAIN PROGRAM
ENTER INPUT OPTION.

INTERVAL NO. OF FAULTS TESTING LENGTH

1 .12000000E+03 .10000000E+01

2 .18500000E+03 .10000000E+01

3 .10000000E+01 .10000000E+01

4 .19100000E4O3 .10000000E+01

5 .21300000E-K)3 .10000000E+01

6 .17800000E+03 .10000000E+01

7 .54000000E4O2 .10000000E4O1

8 .39000000E4O2 .10000000E-+O1

9 .15000000E+O2 .10000000E401

10 .28000000E-K)2 .10000000E+O1

11 .99000000E+02 .10000000E-K)1

12 .70000000E+02 .10000000E+01

13 .60000000E+O2 .10000000E4O1

14 .10000000E+02 .lOOOOOOOE+01

15 .10500000E4O3 .10000000E+01

16 .11500000E4O3 .10000000E+01

17 .82000000E+02 .10000000E+01

18 .59000000E+02 .10000000E+O1

19 .73000000E+02 .10000000E4O1

20 .60000000E4O1 .10000000E+01

21 .18000000E+O2 .10000000E+01

22 .190000O0E+O2 .10000000E+O1

23 .32000000E+02 .10000000E+01

24 .31000000E+02 .lOOOOOOOE+01

25 .20000000E+02 .10000000E4O1

26 .70000000E+01 .10000000E+01

27 .10000000E+02 .10000000E+01

28 .21000000E+O2 .10000000E+01

29 .54000000E4O2 .10000000E+01

32

www.manaraa.com

30 .14000000E402 .10000000E+01

ENTER ONE TO INVESTIGATE FOR THE OPTIMUM S (USING TREATMENT TYPE
NUMBER 2); ELSE ZERO TO CONTINUE WITH THE MODEL EXECUTION.

1

ENTER RANGE OVER WHICH S SHOULD BE TESTED. NOTE, AN EXECUTION
ON A GIVEN S WHICH FAILED THE CONVERGENCE CRITERIA WELL NOT BE
INCLUDED IN THE FOLLOWING RESULTS TABLE. THE OPTIMUM S FOR EI-

THER MSE-F OR MSE-T IS THE ONE RESULTING IN THE SMALLEST VALUE
FOR YOUR CHOSEN CRITERIA.

1 30

S BETA ALPHA WLS MSE-F MSE-T

1 .69434E-01 .15299E+03 .42946E+04 .31693E+04 .85711E+00

2 .72231E-01 .14901E+03 .42323E+04 .33143E+04 .84940E+00

23 .25195E-02 .23864E-K)2 .20573E+03 .16798E+03 J2778E+00

ENTER DESIRED MODEL TREATMENT NUMBER OR FOUR TO TERMINATE MODEL
EXECUTION.

2

ENTER ASSOCIATED VALUE OF S (LESS THAN THE NUMBER OF PERIODS).

23

TREATMENT 2 MODEL ESTIMATES ARE:
BETA .25195E-02

ALPHA .23864E+02

TOTAL NUMBER OF FAULTS .94715E+04

PLUS THOSE SKIPPED .17400E+04 IN PERIODS 1 THROUGH 22

OF FAULTS REMAINING .75425E+04

WEIGHTED SUMS-OF-SQUARES
BETWEEN PREDICTED AND
OBSERVED FAULTS .20573E+03

MEAN SQUARE ERROR FOR
CUMULATTVE FAULTS . 16798E+03

MEAN SQUARE ERROR FOR
TIME TO NEXT FAILURE .32778E+00

* CORRECTPREDICTED TOTALNUMBER OF DEFECTS = 9471.5+1740.0 (NUMBER SKD?PED)=11211.5*

* ACTUAL TOTAL NUMBER OF DEFECTS^? (WON'T KNOW UNTIL LOGAIS RETIRED FROM
SERVICE)*

* CORRECT PREDICTED NUMBER OF REMAINING DEFECTS=7542.5+1740.0 (NUMBER SKTPPED)=
9282.5*

*ACTUAL NUMBER OF REMAINING DEFECTS=? (WONT KNOW UNTIL LOGAIS RETIRED FROM
SERVICE)*

33

www.manaraa.com

THE AVAILABLE FUTURE PREDICTIONS ARE:

1) THE NUMBER OF FAULTS EXPECTED IN THE NEXT TESTING PERIOD
2) THE NUMBER OF PERIODS NEEDED TO DISCOVER THE NEXT M FAULTS

ENTER PREDICTION OPTION, OR ZERO TO END PREDICTIONS.

2

(See Figure 16, page 59 in the handbookfor plots ofthefollowing results)

ENTER VALUE OF M (BETWEEN ONE AND .75425E+04), OR ZERO TO END.

56.000000000000000 *NUMBER OF OBSERVED DEFECTS IN THE RANGE 31,35 (DAYS)

SEE LOGAIS DATA*

OF PERIODS EXPECTED .24017E+01 *ACTUAL=5*

ENTER VALUE OF M (BETWEEN ONE AND .75425E+04), OR ZERO TO END.

164.000000000000000 *NUMBER OF OBSERVED DEFECTS IN THE RANGE 31,40 (DAYS)

SEE LOGAIS DATA*

OF PERIODS EXPECTED .70749E+01 *ACTUAL=10*

ENTER VALUE OF M (BETWEEN ONE AND .75425E+04), OR ZERO TO END.

433.000000000000000 *NUMBER OF OBSERVED DEFECTS IN THE RANGE 31,45 (DAYS)*

OF PERIODS EXPECTED 18960E+02 *ACTUAL=15*

ENTER VALUE OF M (BETWEEN ONE AND .75425E+04), OR ZERO TO END.

495.000000000000000 *NUMBER OF OBSERVED DEFECTS IN THE RANGE 31,50 (DAYS)*

OF PERIODS EXPECTED .21750E+02 *ACTUAL=20*

ENTER VALUE OF M (BETWEEN ONE AND .75425E+04), OR ZERO TO END.

987.000000000000000 *NUMBER OF OBSERVED DEFECTS IN THE RANGE 31,55 (DAYS)*

OF PERIODS EXPECTED .44618E+02 *ACTTJAL=25*

34

www.manaraa.com

162

www.manaraa.com

APPENDIX C. LOGAIS DEFECT DATA

Table 3: LOGAIS Chronological Defect Counts

Count

Interval (t)

Defect ID

Range

Number of

Defects

Summit Date Day

1 1-120 120 1 1/1 1/94 Fri

2 121-305 185 11/12/94 Sat

3 306 1 11/13/94 Sun

4 307-497 191 11/14/94 Mon

5 498-710 213 11/15/94 Tue

5 Day Total 710

Cumulative 710

6 711-888 178 11/16/94 Wed

7 889-942 54 11/17/94 Thu

8 943-981 39 11/18/94 Fri

9 982-996 15 11/19/94 Sat

10 997-1024 28 11/20/94 Sun

5 Day Total 314

Cumulative 1024

11 1025-1123 99 11/21/94 Mon

12 1124-1193 70 1 1/22/94 Tue

13 1194-1253 60 1 1/23/94 Wed

14 1254-1263 10 1 1/25/94 Fri

15 1264-1368 105 1 1/28/94 Mon

5 Day Total 344

Cumulative 1368

16 1369-1483 115 11/29/94 Tue

17 1484-1565 82 11/30/94 Wed

18 1566-1624 59 12/1/94 Thu

19 1625-1697 73 12/2/94 Fri

163

www.manaraa.com

20 1698-1703 6 12/3/94 Sat

5 Day Total 335

Cumulative 1703

21 1704-1721 18 12/4/94 Sun

22 1722-1740 19 12/5/94 Mon

23 1741-1772 32 12/6/94 Tue

24 1773-1803 31 12/7/94 Wed

25 1804-1823 20 12/8/94 Thu

5 Day Total 120

Cumulative 1823

26 1824-1830 7 12/9/94 Fri

27 1831-1840 10 12/15/94 Thu

28 1841-1861 21 12/19/94 Mon

29 1862-1915 54 12/20/94 Tue

30 1916-1929 14 12/21/94 Wed

S Day Total 106

Cumulative 1929

31 1930-1935 6 12/22/94 Thu

32 1936-1960 25 12/23/94 Fri

33 1961-1964 4 12/28/94 Wed

34 1965-1982 18 12/29/94 Thu

35 1983-1985 3 12/30/94 Fri

5 Day Total 56

Cumulative 1985

36 1986 1 1/3/95 Tue

37 1987-2000 14 1/4/95 Wed

38 2001-2003 3 1/5/95 Thu

39 2004-2027 24 1/6/95 Fri

40 2028-2093 66 1/9/95 Mon

164

www.manaraa.com

5 Day Total 108

Cumulative 2093

41 2094-2157 64 1/10/95 Tue

42 2158-2231 74 1/11/95 Wed

43 2232-2292 61 1/12/95 Thu

44 2293-2358 66 1/13/95 Fri

45 2359-2362 4 1/14/95 Sat

5 Day Total 269

Cumulative 2362

46 2363-2372 10 1/16/95 Mon

47 2373-2390 18 1/17/95 Tue

48 2391-2399 9 1/18/95 Wed

49 2400-2405 6 1/19/95 Thu

50 2406-2424 19 1/20/95 Fri

5 Day Total 62

Cumulative 2424

51 2425-*** 48 1/24/95 Tue

52 2426-*** 44 1/25/95 Wed

53 2430-*** 145 1/26/95 Thu

54 2433-*** 227 1/27/95 Fri

55 2446-2473 28 1/30/95 Mon

5 Day Total 492

Cumulative 2916

56 2474-2480 7 1/31/95 Tue

57 2481-2486 6 2/1/95 Wed

58 2487-2510 24 2/2/95 Thu

59 2511-2529 19 2/3/95 Fri

60 2530-2543 14 2/6/95 Mon

5 Day Total 70

165

www.manaraa.com

Cumulative 2986

61 2544*** 53 2/7/95 Tue

62 3040-3067 28 2/8/95 Wed

63 3068-3099 32 2/9/95 Thu

64 3100-3110 11 2/10/95 Fri

65 3111-3137 27 2/13/95 Mon

5 Day Total 151

Cumulative 3137

66 3138-3146 9 2/14/95 Tue

67 3147-3167 21 2/15/95 Wed

68 3168-3213 46 2/16/95 Thu

69 3214-3233 20 2/17/95 Fri

70 3234-3242 9 2/21/95 Tue

5 Day Total 105

Cumulative 3242

71 3243-3260 18 2/22/95 Wed

72 3261-3314 54 2/23/95 Thu

73 3315-3320 6 2/24/95 Fri

74 3321-3324 4 2/27/95 Mon

75 3325-3334 10 2/28/95 Tue

5 Day Total 92

Cumulative 3334

76 3335-3340 6 3/1/95 Wed

77 3341 1 3/2/95 Thu

78 3342-3343 2 3/3/95 Fri

79 3344-3347 4 3/6/95 Mon

80 3348-3349 2 3/7/95 Tue

5 Day Total 15

Cumulative 3349

81 3350-3362 13 3/8/95 Wed

82 3363-3368 6 3/10/95 Fri

166

www.manaraa.com

83 3369-3379 11 3/13/95 Mon

84 3380-3383 4 3/14/95 Tue

85 3384-3419 36 3/15/95 Wed

5 Day Total 70

Cumulative 3419

86 3420-3431 12 3/16/95 Thu

87 3432-3447 16 3/17/95 Fri

88 3448-3492 45 3/20/95 Mod

89 3493-3530 38 3/21/95 Tue

90 3531-3566 36 3/22/95 Wed

5 Day Total 147

Cumulative 3566

91 3567-3601 35 3/23/95 Thu

92 3602-3616 15 3/24/95 Fri

93 3617-3635 19 3/27/95 Mon

94 3636-3652 17 3/28/95 Tue

95 3653-3658 6 3/29/95 Wed

5 Day Total 92

Cumulative 3658

96 3659-3681 23 3/30/95 Thu

97 3682-3693 12 3/31/95 Fri

98 3694-3710 17 4/3/95 Mon

99 3711-3726 16 4/4/95 Tue

100 3727-3731 5 4/5/95 Wed

5 Day Total 73

Cumulative 3731

101 3732-3769 38 4/6/95 Thu

102 3770-3840 71 4/7/95 Fri

103 3841 1 4/10/95 Mon

167

www.manaraa.com

104 3842-3856 15 4/11/95 Tue

105 3857-3885 29 4/12/95 Wed

5 Day Total 154

Cumulative 3885

106 3906-*** 23 4/13/95 Thu

107 3909-3923 15 4/14/95 Fri

108 3924-3932 9 4/16/95 Sun

109 3933-3949 17 4/17/95 Mon

110 3950-3963 14 4/18/95 Tue

5 Day Total 78

Cumulative 3963

111 3964-4033 70 4/19/95 Wed

112 4034-4079 46 4/20/95 Thu

113 4080-4107 28 4/25/95 Tue

114 4108-4132 25 4/26/95 Wed

115 4133-4167 35 4/27/95 Thu

S Day Total 204

Cumulative 4167

116 4168-4176 9 4/28/95 Fri

117 4177-4185 9 5/1/95 Mon

118 4186-4207 22 5/2/95 Tue

119 4208-4287 80 5/3/95 Wed

120 4288-4320 33 5/4/95 Thu

5 Day Total 153

Cumulative 4320

121 4321-4328 8 5/5/95 Fri

122 4329-4343 15 5/8/95 Mon

123 4344-4356 13 5/9/95 Tue

124 4357-4367 11 5/10/95 Wed

168

www.manaraa.com

125 4368-4418 51 5/1 1/95 Thu

S Day Total 98

Cumulative 4418

126 4419-4504 86 5/12/95 Fri

127 4505-4513 9 5/15/95 Mon

128 4514-4555 42 5/16/95 Tue

129 4556-4584 29 5/17/95 Wed

TOTAL 4584

*** Indicates discontinuous sequences of IDs for Submit Date. First ID of first sequence shown.

Holding indicates breaks in defect submit dates.

169

www.manaraa.com

170

www.manaraa.com

LIST OF REFERENCES

Recommended Practice for Software Reliability, R-013-1992, American National Standards

Institute/American Institute ofAeronautics and Astronautics, 370 L'Enfant Promenade, SW,
Washington, DC 20024, 1993.

IEEE/AIAA Standard for a Software Quality Metrics Methodology, IEEE 1061 June, 1993.

Billings, Charles, "Journey to a Mature Software Process," IBM Systems Journal, Vol. 33,

No. 1, 1994.

Farr, William and Oliver D. Smith, Statistical Modeling and Estimation of Reliability

Functionsfor Software (SMERFS) Users Guide, NAVSWC TR-84-373, Revision 3, Naval

Surface Weapons Center, Revised September 1993.

Keller, Ted, Norman F. Schneidewind, and Patti A. Thornton "Predictions for Increasing

Confidence in the Reliability ofthe Space Shuttle Flight Software," Proceedings of the AIAA

Computing in Aerospace 10, San Antonio, TX, March 28, 1995.

Marine Air-Ground Task Force 11/ Logistics Automated Information System, Test Plan,

Summer, 1995.

Marine Air-Ground Task Force II, Logistics Automated Information System, Logistics

Systems Integration Review, Technical Report Task 1, April 1, 1992

Marine Corps Tactical Systems Support Activity, "An Activity Overview of the Marine

Corps Tactical Systems Support Activity, Camp Pendleton, CA," July 1994.

Marine Corps Tactical Systems Support Activity, Camp Pendleton, CA, "Statement of

Work," prepared for Naval Postgraduate School, Monterey, CA dated February 2, 1995.

Musa, John, Anthony Iannino, and Kazuhira Okumoto, Software ReliabilityMeasurement,

Prediction, Application, McGraw-Hill, NY, 1987.

Schneidewind, Norman F., "Reliability and Risk Analysis for Software that Must be Safe,"

Proceedings ofthe International Symposium on Software Metrics, Berlin, Germany, March

25-26, 1996.

Schneidewind, Norman F. and Judie A. Heineman, "Technical Decision Paper," prepared for

Marine Corps Tactical Systems Support Activity, Camp Pendleton, CA, April 15, 1995.

171

www.manaraa.com

Schneidewind, Norman F. and Judie A. Heineman, "Technology Demonstration Report,"

prepared for Marine Corps Tactical Systems Support Activity, Camp Pendleton, CA,

October 11 1995.

Schneidewind, Norman F., "Software Reliability Model with Optimal Selection of Failure

Data," IEEE Transactions on Software Engineering, Vol. 19, No. 1 1, November 1993.

Schneidewind, Norman F.and Ted Keller, "Application of Reliability Models to the Space

Shuttle," IEEE Software, Vol. 9, No. 4, July 1992.

Schneidewind, Norman F., "Analysis ofError Processes in Computer Software," Proceedings

ofthe International Conference on Reliable Software, IEEE Computer Society, April 21-23,

1975.

Stark, George E., Software Reliability Measurement Handbook, June 1992.

172

www.manaraa.com

INITIAL DISTRIBUTION LIST

Defense Technical Information Center

8725 John J. Kingman Rd., STE 0944

Ft. Belvoir, VA 22060-6218

Dudley Knox Library

Naval Postgraduate School

411 DyerRd.

Monterey, CA 93943-5101

3. Professor Norman F. Schneidewind, Code SM/Ss

Naval Postgraduate School

Monterey, CA 93943-5000

4. Marine Corps Tactical Systems Support Activity

Box 555171

Bldg. 31345

Camp Pendleton, CA 92055-5171

LCDR Judie A. Heineman

1 94 North Henry Street

Brooklyn, NY 11222

173

www.manaraa.com

www.manaraa.com

DUDLEY KNOX LIBRARY

NAVAL POSTGRADUATE SCHOOL

MONTEREY CA 93943-5101

www.manaraa.com

3 2768 00322896 6

